基于改进YOLOv8s的矿井下安全帽佩戴检测
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

黑龙江省属高校基本科研业务费(2022-KYYWF-0551)


Wearing Safety Helmet Detection Under Mine Based on Improved YOLOv8s
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    矿井下光照缺失、环境复杂, 安全帽目标尺寸较小, 导致一般目标检测模型对安全帽的检测效果不佳. 针对上述问题, 提出了一种基于改进YOLOv8s的矿井下安全帽佩戴检测模型. 首先, 将effectiveSE模块和YOLOv8s Neck层中的C2f模块相结合, 设计得到新的C2f-eSE模块, 提高了网络结构的特征提取能力, 并用Wise-EIoU损失函数替代CIoU损失函数, 提高了模型的鲁棒性; 其次, 在检测头中引入空间和通道重建卷积模块SCConv, 并根据参数共享思想设计了新的轻量化SPS检测头, 降低了模型的参数量和计算复杂度; 最后在模型中增加一层P2检测层, 使模型的特征提取网络融入更多的浅层信息, 提高了对小尺寸目标的检测能力. 实验结果表明, 改进后模型的mAP50指标提升了3.2%, 参数量降低1.6%, GFLOPs降低5.6%.

    Abstract:

    The lack of lighting and the complex environment in the mine, coupled with the small target size of safety helmets, lead to poor detection performance of safety helmets by general object detection models. To solve these issues, an improved mine safety helmet wearing detection model based on YOLOv8s is proposed. Firstly, the effectiveSE module is combined with the C2f module in the neck network of YOLOv8s to design a new C2f-eSE module, improving the feature extraction ability of the network structure. The CIoU loss function is replaced by the Wise-EIoU loss function to improve the model’s robustness. In addition, the spatial and channel reconstruction convolution (SCConv) module is introduced into the detection head. A new lightweight SPS detection head is designed based on the parameter sharing concept, reducing the number of parameters and computational complexity of the model. Finally, adding a P2 detection layer to the model enables the feature extraction network to incorporate more shallow information and improves the detection ability for small-sized targets. Experimental results show that the mAP50 index of the improved model increases by 3.2%, the number of parameters decreases by 1.6%, and GFLOPs decreases by 5.6%.

    参考文献
    相似文献
    引证文献
引用本文

凌港,赵杰,莫定界,张东青.基于改进YOLOv8s的矿井下安全帽佩戴检测.计算机系统应用,,():1-9

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-06-16
  • 最后修改日期:2024-07-10
  • 录用日期:
  • 在线发布日期: 2024-12-19
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号