摘要:矿井下光照缺失、环境复杂, 安全帽目标尺寸较小, 导致一般目标检测模型对安全帽的检测效果不佳. 针对上述问题, 提出了一种基于改进YOLOv8s的矿井下安全帽佩戴检测模型. 首先, 将effectiveSE模块和YOLOv8s Neck层中的C2f模块相结合, 设计得到新的C2f-eSE模块, 提高了网络结构的特征提取能力, 并用Wise-EIoU损失函数替代CIoU损失函数, 提高了模型的鲁棒性; 其次, 在检测头中引入空间和通道重建卷积模块SCConv, 并根据参数共享思想设计了新的轻量化SPS检测头, 降低了模型的参数量和计算复杂度; 最后在模型中增加一层P2检测层, 使模型的特征提取网络融入更多的浅层信息, 提高了对小尺寸目标的检测能力. 实验结果表明, 改进后模型的mAP50指标提升了3.2%, 参数量降低1.6%, GFLOPs降低5.6%.