摘要:具身智能(embodied AI)需要能够与环境进行互动和感知, 并具备自主规划、决策和行动等能力. 行为树(BT)由于其模块化和高效控制的特性, 已经成为机器人技术中广泛使用的方法. 然而, 现有的行为树生成技术在处理复杂任务时仍面临一定的挑战. 这些方法通常依赖于领域专业知识, 生成行为树的能力有限. 此外, 许多现有方法在语言理解方面存在不足, 或者在理论上无法保证行为树的成功, 从而导致在机器人上的实际部署难度较大. 本研究提出一种新的行为树自动生成方法, 该方法基于大语言模型(LLM)和场景语义感知, 生成包含任务目标的初始行为树. 本文的方法根据机器人的能力设计机器人动作原语和相关条件节点, 并以此设计提示(prompt)使LLM输出行为规划(generated plan), 然后将行为规划转化为初始行为树. 虽然本文以此为示例, 但该方法具有广泛的适用性, 可以根据不同需求应用于其他类型的机器人任务. 同时, 本文将这种方法应用于机器人任务中, 并给出具体实现方法和示例. 在机器人执行任务过程中, 行为树可以根据机器人操作失误和环境变化动态更新, 对外部环境变化具有一定的鲁棒性. 本文进行了初始行为树生成验证实验, 并在仿真机器人环境中进行了验证, 展示了本文方法的有效性.