具有时间窗约束松弛的混合蚁群算法求解VRPTW
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(71501064); 湖北文理学院科研能力培育基金科技创新团队项目(2020kypytd006); 湖北文理学院研究生创新计划(YCX202421)


Hybrid Ant Colony Optimization with Time Window Constraint Relaxation for Solving VRPTW
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为求解带时间窗的车辆路径问题, 以最小化总行驶里程为目标建立混合整数规划模型, 提出了一种具有时间窗约束松弛的混合蚁群算法. 首先, 提出改进的蚁群算法与“TSP-Split编码与解码”相结合的方法, 来构建允许违反时间窗约束的解路径, 以提高算法的全局寻优能力. 然后, 利用“及时返回”原则和惩罚函数方法, 提出基于变邻域搜索的修复策略来修复不可行解. 最后, 对56个Solomon和12个Homberger基准算例进行试验计算, 结果表明该算法的求解质量优于文献中的对比算法, 且在50个测试实例上获得了已知最优解, 其余实例也能在可接受计算时间内获得准最优解, 验证了所提算法的有效性.

    Abstract:

    To solve the vehicle routing problem with time windows (VRPTW), this study establishes a mixed-integer programming model aimed at minimizing total distance and proposes a hybrid ant colony optimization algorithm with relaxed time window constraints. Firstly, an improved ant colony algorithm, combined with TSP-Split encoding and decoding, is proposed to construct a routing solution that allows time-window constraints to be violated, to improve the global optimization ability of the algorithm. Then, a repair strategy based on variable neighborhood search is proposed to repair infeasible solutions using the principle of return in time and the penalty function method. Finally, 56 Solomon and 12 Homberger benchmark instances are tested. The results show that the proposed algorithm is superior to the comparative algorithms from references. The known optimal solution can be obtained in 50 instances, and quasi-optimal solutions can be obtained in the remaining instances within acceptable computing time. The results prove the effectiveness of the proposed algorithm.

    参考文献
    相似文献
    引证文献
引用本文

骆维,陈仕军,吴华伟.具有时间窗约束松弛的混合蚁群算法求解VRPTW.计算机系统应用,,():1-11

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-06-23
  • 最后修改日期:2024-07-18
  • 录用日期:
  • 在线发布日期: 2024-11-15
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号