复杂条件下交通标识识别
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

陕西省重点研发计划(2023-YBGY-255); 陕西省科技厅工业攻关(2022GY-115)


Traffic Sign Recognition under Complex Conditions
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    该研究旨在深入探究在复杂多变的交通环境下交通标志与信号灯的联合检测问题, 分析并解决恶劣天气、低光照和图像背景干扰等不利因素对检测精度的影响. 为此, 采用了一种改进RT-DETR网络的策略. 基于资源有限的运行环境, 并为提高模型对于遮挡以及小目标的检测能力, 提出PE-ResNet (ResNet with PConv and efficient multi-scale attention)网络作为主干网络. 为了增强特征融合能力, 提出了NCFM (new cross-scale feature-fusion module)模块, 有助于更好地整合图像中的语义信息和细节信息, 对复杂场景的理解更为全面. 最后引入MPDIoU损失函数, 更精确地衡量目标框之间的位置关系. 改进后的网络相较于基线模型参数量降低了约14%. 在CCTSDB 2021数据集、S2TLD数据集以及自制的MTST (multi-scene traffic signs)数据集上, mAP50:95分别增加了1.9%、2.2%和3.7%. 实验结果表明, 改进之后的RT-DETR模型可以有效地改进复杂场景下目标检测精度.

    Abstract:

    This study aims to delve into the joint detection of traffic signs and signals under complex and variable traffic conditions, analyzing and resolving the detrimental effects of harsh weather, low lighting, and image background interference on detection accuracy. To this end, an improved RT-DETR network is proposed. Based on a resource-limited operating environment, this study introduces a network, ResNet with PConv and efficient multi-scale attention (PE-ResNet), as the backbone to enhance the model’s capability to detect occlusions and small targets. To augment the feature fusion capability, a new cross-scale feature-fusion module (NCFM) is introduced, which facilitates better integration of semantic and detailed information within images, offering a more comprehensive understanding of complex scenes. Additionally, the MPDIoU loss function is introduced to more accurately measure the positional relationships among target boxes. The improved network reduces the parameter count by approximately 14% compared to the baseline model. On the CCTSDB 2021 dataset, S2TLD dataset, and the self-developed multi-scene traffic signs (MTST) dataset, the mAP50:95 increases by 1.9%, 2.2%, and 3.7%, respectively. Experimental results demonstrate that the enhanced RT-DETR model effectively improves target detection accuracy in complex scenarios.

    参考文献
    相似文献
    引证文献
引用本文

黄健,展越,胡翻.复杂条件下交通标识识别.计算机系统应用,,():1-8

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-06-09
  • 最后修改日期:2024-07-10
  • 录用日期:
  • 在线发布日期: 2024-11-15
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号