摘要:骶髂关节病变是预警强直性脊柱炎的主要体征之一, 精确高效的骶髂关节自动分割对于协助医生临床诊断和治疗至关重要. 针对骶髂关节灰度多变、背景复杂、且因骶髂间隙狭小而存在容积效应导致的特征提取受限, 分割精度难以提升的问题, 本研究利用层次级联补偿下采样信息丢失以及注意力并行保留跨维信息特征的思想, 提出首个用于骶髂关节分割诊断的U型网络. 此外, 为了提高临床诊断的效率, 将U型网络中传统的卷积替换为高效部分卷积块. 本实验在山西白求恩医院提供的骶髂关节CT数据集中, 验证了分割精度及效率平衡方面的有效性, 最终DICE达到91.52%, IoU达到84.41%. 实验结果表明, 改进的U型分割网络能有效提高骶髂关节分割精度, 减轻医疗专业人员的负担.