摘要:剩余时间预测能够帮助企业提升业务流程执行的质量和效率. 尽管现有的深度学习方法在剩余时间预测上有一定提升, 但在处理复杂业务流程时, 仍面临时间特征利用不足和局部特征挖掘能力有限的问题, 预测精度有待提高. 为此, 本研究提出了一种基于改进Transformer编码器模型的剩余时间预测方法. 针对已有方法忽略事件时间特征以及难以捕捉局部依赖的不足, 本研究在模型中引入了时间特征编码模块和局部依赖增强模块. 时间编码模块通过嵌入学习和多粒度拼接方式, 构建了富有语义且具判别力的事件时间表示. 局部依赖增强模块采用卷积神经网络, 在Transformer编码器之后提取轨迹前缀的局部细节特征. 实验表明, 融合时间特征和局部依赖增强可以提升复杂业务流程剩余时间的预测准确性.