摘要:模型量化方法现已广泛应用于深度神经网络模型快速推理和部署中. 由于训练后量化重新训练所需时间少, 性能损失小而备受研究人员关注, 但现有训练后量化方法在量化过程中大多以理论假设或是固定分配网络层的比特位宽, 导致量化后的网络会出现显著的性能损失, 尤其是在低位情况下. 为了提升训练后量化网络模型的精度, 本文提出一种训练后混合精度量化方法(MSQ), 该方法通过在网络模型每一层后插入一个融合了金字塔池化模块和权值印记技术的任务预测器模块, 来对网络每一层进行准确度估计, 从而评估每一层网络的重要性, 根据重要性评估来确定每一层的量化比特位宽. 实验表明, 本文所提出的MSQ算法在多个流行的网络架构上都优于现有的一些混合精度量化方法, 量化后的网络模型在边缘硬件设备上测试性能更好, 延迟更低.