摘要:Hadoop系统作为大数据存储的分布式架构被广泛使用, 运行时生成大量日志数据来记录设备的异常情况, 这为定位和分析问题提供重要线索. 然而, 传统的日志异常检测模型通常在中心服务器上收集日志数据, 导致数据收集过程中存在敏感信息泄露的风险. 联邦学习作为一种新的机器学习范式, 通过在本地服务器上训练模型并仅在中心服务器上聚合模型参数, 有效解决了数据隐私问题. 本文提出了一种基于联邦学习的日志异常检测架构, 结合本地服务器和中心服务器进行检测任务, 避免了敏感信息在网络传输过程中的泄露风险. 此外, 本文采用树解析器实现日志模板标准化. 为了有效地捕获日志数据中的复杂模式和异常行为, 建立基于自注意力机制的BiLSTM模型作为本地服务器模型. 为了验证所提出方法的有效性, 本文使用公开的分布式系统架构数据集进行仿真实验. 结果表明, 该模型的综合评价指标稳定, 准确率保持在93%以上, 具有较高的适用性.