多类型任务负载预测的负载均衡任务卸载
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(62172061); 四川省揭榜挂帅项目(2023YFG0374)


Load Balancing Task Offloading for Multi-type Task Load Prediction
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在移动边缘计算(mobile edge computing, MEC)背景下, 不合理的任务卸载策略和资源分配以及多类型任务数量急剧增加导致边缘服务器间的负载不均衡. 针对上述问题, 本文基于多用户多MEC的边缘环境, 提出一种面向多类型任务的负载预测以及均衡分配方案(load prediction and balanced assignment scheme for multi-type tasks, LBMT). 该方案包括划分任务类型、任务负载预测、任务自适应映射3个部分. 首先, 考虑任务类型的多样性设计了任务类型模型, 利用该模型划分任务类型. 其次, 考虑不同任务对服务器造成的负载具有差异性提出了任务负载预测模型, 并在此基础上采用改进KNN (K-nearest neighbor)算法用于预测任务负载. 然后, 综合考虑MEC服务器异构性、资源有限等因素, 结合MEC服务器负载均衡模型设计了任务分配模型, 并提出基于自适应任务映射算法用于任务分配. 最后, LBMT针对MEC服务器资源利用率和任务处理率进行优化, 得到最优负载均衡任务卸载策略. LBMT与基于改进的min-min卸载方案、基于中间节点的卸载方案、基于加权二分图的卸载等方案进行仿真实验对比, 实验结果表明LBMT在资源利用率上提高了12.5%以上, 任务处理率提高了20.3%以上, 并显著降低了负载均衡标准差值, 更有效地实现了服务器之间的负载均衡.

    Abstract:

    In mobile edge computing (MEC), load imbalance among edge servers occurs due to irrational task offloading strategies and resource allocation, as well as a sharp increase in the number of multi-type tasks. To address the above-mentioned issues, this study proposes a load prediction and balanced assignment scheme for multi-type tasks (LBMT) in a multi-user, multi-MEC edge environment. The LBMT scheme includes three components: task type classification, task load prediction, and task adaptive mapping. Firstly, considering the diversity of task types, a task type model is designed to classify tasks. Secondly, a task load prediction model is developed, considering the varying loads imposed by different tasks on servers, and employs an improved K-nearest neighbor (KNN) algorithm for load prediction. Thirdly, taking into account the heterogeneity of MEC servers and the limitation of resources, a task allocation model is designed in conjunction with a server load balancing model. Additionally, a task allocation method based on an adaptive task mapping algorithm is proposed. Finally, the LBMT scheme optimizes resource utilization and task processing rates for MEC servers to achieve the optimal load-balanced task offloading strategy. Simulation experiments compare LBMT with improved min-min offloading, intermediate node-based offloading, and weighted bipartite graph-based offloading schemes. The results show that LBMT improves the resource utilization rate by more than 12.5% and the task processing rate by more than 20.3%. Additionally, LBMT significantly reduces the standard deviation of load balancing, more effectively achieving load balance among servers.

    参考文献
    相似文献
    引证文献
引用本文

胡辉,沈艳.多类型任务负载预测的负载均衡任务卸载.计算机系统应用,2024,33(12):16-29

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-04-23
  • 最后修改日期:2024-06-17
  • 录用日期:
  • 在线发布日期: 2024-10-31
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号