摘要:随着工业自动化的不断发展, 工件的三维重建技术在制造业中扮演着越来越重要的角色. 在实际的工作环境下, 工件普遍存在堆叠问题, 对后续的机器人识别抓取等工作存在较大影响. 目前三维重建技术对于一些具有弱纹理区域的工件重建, 仍存在图像特征点提取难度大、特征配准精度低的问题. 针对以上问题, 本文提出了一种基于多视图立体匹配深度学习的堆叠工件三维重建方法. 首先, 输入多张不同视角的图像经过融合DCNv2的特征金字塔网络, 进行特征提取; 然后, 进行单应性变换构建代价体, 再使用方差聚合为一个统一的代价体; 接着在代价体正则化部分, 引入SE通道注意力机制模块来提高网络的特征表达能力, 增强模型的性能和泛化能力; 此方法在DTU (Danish Technical University)数据集上具有较好的表现, 并且运用该方法生成的堆叠工件点云模型对以后的工业自动化开展具有重要意义.