摘要:急性缺血性脑卒中是临床上最常见的卒中类型, 因其症状突发且治疗时间窗较短等特点, 成为全球导致残疾和死亡的重要因素之一. 随着人工智能领域的迅速发展, 深度学习技术在急性缺血性脑卒中的诊疗中展现出巨大的潜力. 深度学习模型能够快速高效地根据患者脑部图像对病灶进行分割与检测. 本文介绍深度学习模型的发展历程和用于脑卒中研究的常用公开数据集. 针对计算机断层扫描(computerized tomography, CT)和磁共振成像(magnetic resonance imaging, MRI)衍生出的多种模态和扫描序列, 详细阐述了深度学习技术在急性缺血性脑卒中病灶分割与检测领域的研究进展, 总结并分析了相关研究的改进思路. 最后, 指出了深度学习在该领域现存的挑战并提出了可能的解决方案.