深度学习在皮肤癌病变分类诊断中的应用进展
作者:
基金项目:

国家自然科学基金面上项目(82174528); 山东省研究生教育优质课程和教学资源库建设项目(SDYKC20047, SDYAL2022041); 教育部产学合作协同育人项目(220606121142949)


Advances in Deep Learning for Classification and Diagnosis of Skin Cancer Lesion
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [84]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    皮肤癌是最常见和最致命的癌症类型之一, 患病数量在世界范围内急剧增加. 如果没有在早期阶段诊断出来, 它可能转移, 导致高死亡率. 结合近几年的相关文献就传统机器学习和深度学习两种学习方法在皮肤癌病变诊断中的应用作一系统综述, 为皮肤癌诊断的深入研究提供相应的参考价值, 首先对几个皮肤病公共可获取数据集进行整理, 其次分析和比较不同的学习算法在皮肤癌病变分类中的应用, 更好地了解它们在实际应用中的优势和局限性, 重点阐述在卷积神经网络领域的分类诊断. 在深入了解这些算法的基础上, 还将探讨它们在处理皮肤疾病时的性能差异、改进思路. 最终, 通过对当前挑战和未来发展方向的探讨, 将为进一步提升皮肤癌早期诊断系统的性能和可靠性提供有益的参考和建议.

    Abstract:

    Skin cancer is one of the most common and deadliest types of cancer, with its incidence rapidly increasing worldwide. Failure to diagnose it in its early stages can lead to metastasis and high mortality rates. This study provides a systematic review of recent literature on the application of traditional machine learning and deep learning in the diagnosis of skin cancer lesions, providing valuable reference for further research in skin cancer diagnosis. Firstly, several publicly available datasets of skin diseases are compiled. Secondly, the application of different machine learning algorithms in the classification of skin cancer lesions is analyzed and compared to better understand their advantages and limitations in practical applications, with a focus on convolutional neural network in diagnosis classification. With a thorough understanding of these algorithms, their performance differences and improvement strategies in dealing with skin diseases are discussed. Ultimately, through discussions on current challenges and future directions, beneficial insights and recommendations are provided to further enhance the performance and reliability of early skin cancer diagnosis systems.

    参考文献
    [1] Kumari S, Choudhary PK, Shukla R, et al. Recent advances in nanotechnology based combination drug therapy for skin cancer. Journal of Biomaterials Science, Polymer Edition, 2022, 33(11): 1435–1468.
    [2] Anand V, Gupta S, Nayak SR, et al. An automated deep learning models for classification of skin disease using dermoscopy images: A comprehensive study. Multimedia Tools and Applications, 2022, 81(26): 37379–37401.
    [3] Skin Cancer Foundation. Skin cancer information. http://www.skincancer.org/skin-cancer-information. (2016-08-20).
    [4] CSCO黑色素瘤专家委员会. 中国黑色素瘤诊治指南. 北京: 人民卫生出版社, 2012.
    [5] Cazzato G, Mangialardi K, Falcicchio G, et al. Preferentially expressed antigen in melanoma (PRAME) and human malignant melanoma: A retrospective study. Genes, 2022, 13(3): 545.
    [6] Mohakud R, Dash R. Skin cancer image segmentation utilizing a novel EN-GWO based hyper-parameter optimized FCEDN. Journal of King Saud University—Computer and Information Sciences, 2022, 34(10): 9889–9904.
    [7] Habif TP, Dinulos JG, Chapman MS, et al. Skin Disease: Diagnosis and Treatment. 4th ed., Amsterdam: Elsevier, 2017.
    [8] 张汉明, 马金刚, 张宁宁, 等. 深度学习在癫痫检测中的应用进展. 计算机工程与应用, 2023, 59(10): 35–47.
    [9] 孙石磊, 李明, 刘静, 等. 深度学习在糖尿病视网膜病变分类领域的研究进展. 计算机工程与应用, 2024, 60(8): 16–30.
    [10] 殷文君. 基于深度学习的医学影像分类与分割算法研究[硕士学位论文]. 桂林: 桂林电子科技大学, 2023.
    [11] 张杰, 赵惠军, 李贤威, 等. 基于深度学习方法检测皮肤镜图像中黑色素瘤的研究进展与展望. 医疗卫生装备, 2018, 39(11): 90–95.
    [12] 杨聚加, 段然, 吴亚光, 等. 数据分类算法智慧诊疗模型在皮肤痤疮诊断中的研究与应用. 重庆医学, 2022, 51(3): 507–511.
    [13] Li HF, Pan YN, Zhao J, et al. Skin disease diagnosis with deep learning: A review. Neurocomputing, 2021, 464: 364–393.
    [14] Bhatt H, Shah V, Shah K, et al. State-of-the-art machine learning techniques for melanoma skin cancer detection and classification: A comprehensive review. Intelligent Medicine, 2023, 3(3): 180–190.
    [15] Mendonça T, Ferreira PM, Marques JS, et al. PH2—A dermoscopic image database for research and benchmarking. Proceedings of the 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Osaka: IEEE, 2013. 5437–5440.
    [16] Codella NCF, Gutman D, Celebi ME, et al. Skin lesion analysis toward melanoma detection: A challenge at the 2017 international symposium on biomedical imaging (ISBI), hosted by the international skin imaging collaboration (ISIC). Proceedings of the 15th IEEE International Symposium on Biomedical Imaging (ISBI 2018). Washington: IEEE, 2018. 168–172.
    [17] Gutman D, Codella NC, Celebi E, et al. Skin lesion analysis toward melanoma detection: A challenge at the international symposium on biomedical imaging (ISBI) 2016, hosted by the international skin imaging collaboration (ISIC). arXiv:1605.01397, 2016.
    [18] Marchetti MA, Codella NCF, Dusza SW, et al. Results of the 2016 international skin imaging collaboration international symposium on biomedical imaging challenge: Comparison of the accuracy of computer algorithms to dermatologists for the diagnosis of melanoma from dermoscopic images. Journal of the American Academy of Dermatology, 2018, 78(2): 270–277.
    [19] Li YX, Shen LL. Skin lesion analysis towards melanoma detection using deep learning network. Sensors, 2018, 18(2): 556.
    [20] Tschandl P, Rosendahl C, Kittler H. The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. Scientific Data, 2018, 5(1): 180161.
    [21] Dermofit image library. https://licensing.edinburgh-innovations.ed.ac.uk/i/software/dermofit-image-library.html. (2019-09-11).
    [22] Giotis I, Molders N, Land S, et al. MED-NODE: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications, 2015, 42(19): 6578–6585.
    [23] Dermnet. http://www.dermnet.com/. (2019-09-11).
    [24] Hatem MQ. Skin lesion classification system using a K-nearest neighbor algorithm. Visual Computing for Industry, Biomedicine, and Art, 2022, 5(1): 7.
    [25] Pal OK. Skin disease classification: A comparative analysis of K-nearest neighbors (KNN) and random forest algorithm. Proceedings of the 2021 International Conference on Electronics, Communications and Information Technology (ICECIT). Khulna: IEEE, 2021. 1–5.
    [26] Abbes W, Sellami D, Marc-Zwecker S, et al. Fuzzy decision ontology for melanoma diagnosis using KNN classifier. Multimedia Tools and Applications, 2021, 80(17): 25517–25538.
    [27] Zhuang JX, Cai JB, Wang RX, et al. Deep KNN for medical image classification. Proceedings of the 23rd International Conference on Medical Image Computing and Computer Assisted Intervention. Lima: Springer, 2020. 127–136.
    [28] Raju DN, Shanmugasundaram H, Sasikumar R. Fuzzy segmentation and black widow-based optimal SVM for skin disease classification. Medical & Biological Engineering & Computing, 2021, 59(10): 2019–2035.
    [29] Balamurugan M, Periasamy JK, Akash M, et al. An efficient mechanism to detect skin disease using SVM. Journal of Green Engineering, 2020, 10(10): 9506–9516.
    [30] Hasanah RL, Riana D. Classification of dermoscopic image of skin cancer using the GLCM method and multi-SVM algorithm. Rekayasa, 2021, 14(3): 407–415.
    [31] Nawar A, Sabuz NK, Siddiquee SMT, et al. Skin disease recognition: A machine vision based approach. Proceedings of the 7th International Conference on Advanced Computing and Communication Systems (ICACCS). Coimbatore: IEEE, 2021. 1029–1034.
    [32] Arora G, Dubey AK, Jaffery ZA, et al. Bag of feature and support vector machine based early diagnosis of skin cancer. Neural Computing and Applications, 2022, 34(11): 8385–8392.
    [33] Lingaraj M, Senthilkumar A, Ramkumar J. Prediction of melanoma skin cancer using veritable support vector machine. Annals of the Romanian Society for Cell Biology, 2021, 25(4): 2623–2636.
    [34] Battineni G, Sagaro GG, Chinatalapudi N, et al. Applications of machine learning predictive models in the chronic disease diagnosis. Journal of Personalized Medicine, 2020, 10(2): 21.
    [35] Cervantes J, Garcia-Lamont F, Rodríguez-Mazahua L, et al. A comprehensive survey on support vector machine classification: Applications, challenges and trends. Neurocomputing, 2020, 408: 189–215.
    [36] Mohanaiah P, Sathyanarayana P, GuruKumar L. Image texture feature extraction using GLCM approach. International Journal of Scientific and Research Publications, 2013, 3(5): 1–5.
    [37] Allugunti VR. A machine learning model for skin disease classification using convolution neural network. International Journal of Computing, Programming and Database Management, 2022, 3(1): 141–147.
    [38] 张荣梅, 张琦, 刘院英. 基于Inception深度残差网络的皮肤黑色素癌图像分类算法. 计算机系统应用, 2021, 30(7): 142–149.
    [39] Maduranga MWP, Nandasena D. Mobile-based skin disease diagnosis system using convolutional neural networks (CNN). International Journal of Image, Graphics Signal Process, 2022, 14(3): 47–57.
    [40] Srinivasu PN, SivaSai JG, Ijaz MF, et al. Classification of skin disease using deep learning neural networks with MobileNet V2 and LSTM. Sensors, 2021, 21(8): 2852.
    [41] Karthik R, Vaichole TS, Kulkarni SK, et al. Eff2Net: An efficient channel attention-based convolutional neural network for skin disease classification. Biomedical Signal Processing and Control, 2022, 73: 103406.
    [42] 王师玮, 陈俊, 易才键. 基于改进ResNet50的皮肤病变图像分类. 软件工程, 2023, 26(6): 50–54.
    [43] Junayed MS, Anjum N, Noman A, et al. A deep CNN model for skin cancer detection and classification. Proceedings of the 2021 International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision. 2021. 71–80.
    [44] Fu’adah YN, Pratiwi NKC, Pramudito MA, et al. Convolutional neural network (CNN) for automatic skin cancer classification system. IOP Conference Series: Materials Science and Engineering, 2020, 982: 012005.
    [45] Anand V, Gupta S, Koundal D, et al. Multi-class skin disease classification using transfer learning model. International Journal on Artificial Intelligence Tools, 2022, 31(2): 2250029.
    [46] Gupta S, Panwar A, Mishra K. Skin disease classification using dermoscopy images through deep feature learning models and machine learning classifiers. Proceedings of the 19th International Conference on Smart Technologies. Lviv: IEEE, 2021. 170–174.
    [47] Hameed N, Shabut AM, Hossain MA. Multi-class skin diseases classification using deep convolutional neural network and support vector machine. Proceedings of the 12th International Conference on Software, Knowledge, Information Management & Applications (SKIMA). Phnom Penh: IEEE, 2018. 1–7.
    [48] Janoria H, Minj J, Patre P. Classification of skin disease from skin images using transfer learning technique. Proceedings of the 4th International Conference on Electronics, Communication and Aerospace Technology (ICECA). Coimbatore: IEEE, 2020. 888–895.
    [49] Senthilkumaran N. Efficient skin cancer detection using enhanced adaptive hybrid RNN classification for bio medical application. Journal of Pharmaceutical Negative Results, 2022, 13(10): 2804–2814.
    [50] Dabbu M, Karuppusamy L, Pulugu D, et al. Water atom search algorithm-based deep recurrent neural network for the big data classification based on spark architecture. International Journal of Machine Learning and Cybernetics, 2022, 13(8): 2297–2312.
    [51] Divya D, Ganeshbabu TR. Fitness adaptive deer hunting-based region growing and recurrent neural network for melanoma skin cancer detection. International Journal of Imaging Systems and Technology, 2020, 30(3): 731–752.
    [52] Shukla A, Shyam GK, Shree R, et al. Skin cancer identification using cat swarm-intelligent generative RNN algorithm. International Journal of Intelligent Systems and Applications in Engineering, 2023, 11(8s): 447–454.
    [53] Gomathi P. Skin cancer prediction with optimized RNN via tunicate swarm algorithm. International Journal of Advanced Research in Engineering and Technology (IJARET), 2020, 11(7): 929–940.
    [54] Vinoth R, Ananth JP. Rider chicken optimization algorithm-based recurrent neural network for big data classification in spark architecture. The Computer Journal, 2022, 65(8): 2183–2196.
    [55] Yunandar R, Irianto SY. Skin cancer clasification using region growing & recurrent neural network. Proceedings of the 2022 International Conference on Information Technology and Business. Lampung: Institut Informatika dan Bisnis Darmajaya, 2022. 58–63.
    [56] Ahmad B, Usama M, Ahmad T, et al. An ensemble model of convolution and recurrent neural network for skin disease classification. International Journal of Imaging Systems and Technology, 2022, 32(1): 218–229.
    [57] Medi PR, Nemani P, Pitta VR, et al. SkinAid: A GAN-based automatic skin lesion monitoring method for iomt frameworks. Proceedings of the 19th OITS International Conference on Information Technology (OCIT). Bhubaneswar: IEEE, 2021. 200–205.
    [58] Wang H, Qi QQ, Sun WJ, et al. Classification of skin lesions with generative adversarial networks and improved MobileNetV2. International Journal of Imaging Systems and Technology, 2023, 33(5): 1561–1576.
    [59] Teodoro AAM, Silva DH, Rosa RL, et al. A skin cancer classification approach using GAN and RoI-based attention mechanism. Journal of Signal Processing Systems, 2023, 95(2–3): 211–224.
    [60] Zhao C, Shuai RJ, Ma L, et al. Dermoscopy image classification based on StyleGAN and DenseNet201. IEEE Access, 2021, 9: 8659–8679.
    [61] Ahmad B, Jun S, Palade V, et al. Improving skin cancer classification using heavy-tailed student t-distribution in generative adversarial networks (TED-GAN). Diagnostics, 2021, 11(11): 2147.
    [62] Abdelhalim ISA, Mohamed MF, Mahdy YB. Data augmentation for skin lesion using self-attention based progressive generative adversarial network. Expert Systems with Applications, 2021, 165: 113922.
    [63] 赵宸, 帅仁俊, 马力, 等. 基于Self-Attention StyleGAN的皮肤癌图像生成与分类. 计算机工程与应用, 2022, 58(18): 111–121.
    [64] Qin ZW, Liu Z, Zhu P, et al. A GAN-based image synthesis method for skin lesion classification. Computer Methods and Programs in Biomedicine, 2020, 195: 105568.
    [65] Behara K, Bhero E, Agee JT. Skin lesion synthesis and classification using an improved DCGAN classifier. Diagnostics, 2023, 13(16): 2635.
    [66] Alsaidi M, Jan MT, Altaher A, et al. Tackling the class imbalanced dermoscopic image classification using data augmentation and GAN. Multimedia Tools and Applications, 2023, 83(16): 49121–49147.
    [67] Xin C, Liu ZF, Zhao KY, et al. An improved Transformer network for skin cancer classification. Computers in Biology and Medicine, 2022, 149: 105939.
    [68] Lungu-Stan VC, Cercel DC, Pop F. SkinDistilViT: Lightweight vision Transformer for skin lesion classification. Proceedings of the 32nd International Conference on Artificial Neural Networks. Heraklion: Springer, 2023. 268–280.
    [69] Rezaee K, Zadeh HG. Self-attention Transformer unit-based deep learning framework for skin lesions classification in smart healthcare. Discover Applied Sciences, 2024, 6(1): 3.
    [70] Hao SN, Zhang LG, Jiang YY, et al. ConvNeXt-ST-AFF: A novel skin disease classification model based on fusion of ConvNeXt and swin Transformer. IEEE Access, 2023, 11: 117460–117473.
    [71] Aladhadh S, Alsanea M, Aloraini M, et al. An effective skin cancer classification mechanism via medical vision Transformer. Sensors, 2022, 22(11): 4008.
    [72] Yang G, Luo SH, Greer P. A novel vision Transformer model for skin cancer classification. Neural Processing Letters, 2023, 55(7): 9335–9351.
    [73] He XZ, Tan EL, Bi HW, et al. Fully Transformer network for skin lesion analysis. Medical Image Analysis, 2022, 77: 102357.
    [74] Abbas Q, Daadaa Y, Rashid U, et al. Assist-Dermo: A lightweight separable vision Transformer model for multiclass skin lesion classification. Diagnostics, 2023, 13(15): 2531.
    [75] Kassem MA, Hosny KM, Damaševičius R, et al. Machine learning and deep learning methods for skin lesion classification and diagnosis: A systematic review. Diagnostics, 2021, 11(8): 1390.
    [76] 文成林, 吕菲亚. 基于深度学习的故障诊断方法综述. 电子与信息学报, 2020, 42(1): 234–248.
    [77] Sinha D, El-Sharkawy M. Thin MobileNet: An enhanced mobilenet architecture. Proceedings of the 10th IEEE Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON). New York: IEEE, 2019. 280–285.
    [78] Zhong ZY, Jin LW, Xie ZC. High performance offline handwritten chinese character recognition using GoogLeNet and directional feature maps. Proceedings of the 13th International Conference on Document Analysis and Recognition (ICDAR). Tunis: IEEE, 2015. 846–850.
    [79] 陈明海, 贺建峰. 基于部分迁移学习的皮肤病图像分类. 生物医学工程与临床, 2022, 26(3): 272–277.
    [80] Xia XL, Xu C, Nan B. Inception-v3 for flower classification. Proceedings of the 2nd International Conference on Image, Vision and Computing (ICIVC). Chengdu: IEEE, 2017. 783–787.
    [81] Iandola FN, Han S, Moskewicz MW, et al. SqueezeNet: AlexNet-level accuracy with 50×fewer parameters and <0.5 MB model size. arXiv:1602.07360, 2016.
    [82] 吴甜, 刘海华, 童顺延. 基于深度反馈的卷积神经网络的图像分类. 计算机与现代化, 2023(9): 82–86.
    [83] 曾懋胜. 基于GAN的图像生成研究 [硕士学位论文]. 杭州: 杭州电子科技大学, 2023.
    [84] 黄倩, 崔静雯, 李畅. 基于骨骼的人体行为识别方法研究综述. 计算机辅助设计与图形学学报, 2024, 36(2): 173–194.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

刘天宇,刘静,马金刚,陈天真,李明.深度学习在皮肤癌病变分类诊断中的应用进展.计算机系统应用,2024,33(12):1-15

复制
分享
文章指标
  • 点击次数:463
  • 下载次数: 2085
  • HTML阅读次数: 577
  • 引用次数: 0
历史
  • 收稿日期:2024-05-30
  • 最后修改日期:2024-06-26
  • 在线发布日期: 2024-10-31
文章二维码
您是第11197721位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号