摘要:皮肤癌是最常见和最致命的癌症类型之一, 患病数量在世界范围内急剧增加. 如果没有在早期阶段诊断出来, 它可能转移, 导致高死亡率. 结合近几年的相关文献就传统机器学习和深度学习两种学习方法在皮肤癌病变诊断中的应用作一系统综述, 为皮肤癌诊断的深入研究提供相应的参考价值, 首先对几个皮肤病公共可获取数据集进行整理, 其次分析和比较不同的学习算法在皮肤癌病变分类中的应用, 更好地了解它们在实际应用中的优势和局限性, 重点阐述在卷积神经网络领域的分类诊断. 在深入了解这些算法的基础上, 还将探讨它们在处理皮肤疾病时的性能差异、改进思路. 最终, 通过对当前挑战和未来发展方向的探讨, 将为进一步提升皮肤癌早期诊断系统的性能和可靠性提供有益的参考和建议.