基于可信信息覆盖模型的WSN覆盖可靠性优化
作者:
基金项目:

国网智能研究院双创孵化项目(20233026)


WSN Coverage Reliability Optimization Based on Confident Information Coverage Model
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [17]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    随着智能物联网的快速发展及运用, 其对网络的使用寿命、可靠性及覆盖范围提出了新的挑战. 目前的无线传感器网络(wireless sensor network, WSN)是由大量部署在监测区域内的自组织型传感器节点组成, 其具备低成本、节能、自组织和大规模部署等优势. 然而, 如何在此基础上进一步延长网络寿命, 提高WSN的覆盖可靠性, 是当前研究面临的主要挑战. 为此, 将骨干网络与覆盖模型、传感器节点协同感知和空间相关性结合, 提出了一种覆盖可靠性评估模型. 在此基础上, 提出了一种基于可信信息覆盖的覆盖可靠性优化算法, 一方面, 利用可信信息覆盖模型保证数据的协同感知, 增强网络服务质量, 另一方面, 采用骨干网络优化路由, 节省能量消耗. 进一步地, 为验证所提算法的优越性, 以传感器多状态、覆盖率为评价指标, 以RMSE阈值和能耗为性能指标, 将所提算法与ACR和CICR算法进行对比. 最后, 在Matlab仿真软件上搭建了验证模型, 仿真结果表明, 所提算法能显著提高覆盖可靠性.

    Abstract:

    With the rapid development and application of Artificial Intelligence and the Internet of Things (AIoT), new challenges are posed to the network’s useful life, reliability, and coverage. The current wireless sensor network (WSN) consists of a large number of self-organizing sensor nodes deployed in monitoring areas, exhibiting advantages such as low cost, energy efficiency, self-organization, and large-scale deployment. However, how to further extend the network life and enhance the coverage reliability of wireless sensor networks remains a primary challenge in current research. To address these challenges, a coverage reliability assessment model is proposed by integrating the backbone network with coverage models, collaborative sensing of sensor nodes, and spatial correlation. Subsequently, a coverage reliability optimization algorithm based on the confident information coverage model is proposed. On one hand, the algorithm utilizes the confident information coverage model to ensure collaborative sensing of data, enhancing network service quality. On the other hand, it employs backbone network optimization for routing to conserve energy consumption. Furthermore, to validate the superiority of the proposed algorithm, sensor multi-states, and coverage rate are taken as evaluation metrics, with RMSE threshold and energy consumption as performance indicators. The proposed algorithm is compared with ACR and CICR algorithms. Finally, a verification model is built on Matlab simulation software. Simulation results demonstrate that the proposed algorithm significantly improves coverage reliability.

    参考文献
    [1] Amutha J, Sharma S, Nagar J. WSN strategies based on sensors, deployment, sensing models, coverage and energy efficiency: Review, approaches and open issues. Wireless Personal Communications, 2020, 111(2): 1089–1115.
    [2] Ar-Reyouchi EM, Ghoumid K, Ar-Reyouchi D, et al. Protocol wireless medical sensor networks in IoT for the efficiency of healthcare. IEEE Internet of Things Journal, 2022, 9(13): 10693–10704.
    [3] Wu XW, Lv XT. A sustainable energy strategy powered wireless sensor network system for monitoring child safety. Sustainable Energy Technologies and Assessments, 2023, 57: 103183.
    [4] 李翠然, 王雪洁, 谢健骊, 等. 基于改进PSO的铁路监测线性无线传感器网络路由算法. 通信学报, 2022, 43(5): 155–165.
    [5] García L, Parra L, Jimenez JM, et al. DronAway: A proposal on the use of remote sensing drones as mobile gateway for WSN in precision agriculture. Applied Sciences, 2020, 10(19): 6668.
    [6] Chakraborty S, Goyal NK, Soh S. On area coverage reliability of mobile wireless sensor networks with multistate nodes. IEEE Sensors Journal, 2020, 20(9): 4992–5003.
    [7] Liu Q. Coverage reliability evaluation of wireless sensor network considering common cause failures based on D-S evidence theory. IEEE Transactions on Reliability, 2021, 70(1): 331–345.
    [8] Chakraborty S, Goyal NK, Mahapatra S, et al. A Monte-Carlo Markov chain approach for coverage-area reliability of mobile wireless sensor networks with multistate nodes. Reliability Engineering & System Safety, 2020, 193: 106662.
    [9] 董瑶瑶, 王亚飞, 姚媛媛, 等. SINR概率感知下的无人机覆盖优化. 电讯技术, 2022, 62(7): 929–935.
    [10] Yang HB. A practical method for connectivity and coverage reliability analysis for linear wireless sensor networks. Ad Hoc Networks, 2023, 146: 103183.
    [11] 解文斌, 李佳, 鲜明, 等. 基于拓扑特性的分布式虚拟骨干网算法. 软件学报, 2010, 21(6): 1416–1425.
    [12] 凌飞, 吴振华. 能量均衡的最小连通支配集分布式算法. 传感技术学报, 2012, 25(9): 1316–1321.
    [13] Wang K, Wang L, Obaidat MS, et al. Extending network lifetime for wireless rechargeable sensor network systems through partial charge. IEEE Systems Journal, 2021, 15(1): 1307–1317.
    [14] Wang B, Zhu JJ, Yang LT, et al. Sensor density for confident information coverage in randomly deployed sensor networks. IEEE Transactions on Wireless Communications, 2016, 15(5): 3238–3250.
    [15] Tang Y, Deng XJ, Yi LZ, et al. Collaborative intelligent confident information coverage node sleep scheduling for 6G-empowered green IoT. IEEE Transactions on Green Communications and Networking, 2023, 7(2): 1066–1077.
    [16] Carrano RC, Passos D, Magalhaes LCS, et al. Survey and taxonomy of duty cycling mechanisms in wireless sensor networks. IEEE Communications Surveys & Tutorials, 2014, 16(1): 181–194.
    [17] Singh P, Singh R. Energy-efficient QoS-aware intelligent hybrid clustered routing protocol for wireless sensor networks. Journal of Sensors, 2019, 2019(1): 8691878.
    相似文献
    引证文献
引用本文

梅斯曼,高鹏毅,陈凯,李升辉,吴亚环.基于可信信息覆盖模型的WSN覆盖可靠性优化.计算机系统应用,2025,34(1):258-266

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-05-07
  • 最后修改日期:2024-06-28
  • 在线发布日期: 2024-11-15
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号