摘要:为了实现柑橘采摘的智能化, 果园环境中对柑橘快速而精准的识别成为关键. 针对现有目标检测算法对环境的适应缺陷和效率低下的问题, 提出一种基于YOLOv8n模型的轻量化柑橘成熟度检测算法YOLOv8n-CMD (YOLOv8n citrus maturity detection). 首先, 优化Backbone网络结构, 提高小目标检测能力; 其次, 添加CBAM注意力机制, 改善模型分类效果; 然后, 引入Ghost卷积, 将YOLOv8原模型中的颈部C2f模块与Ghost结合, 减少计算量和参数量; 最后使用SimSPPF模块代替原网络金字塔池化层, 提高模型检测效率. 实验结果表明: YOLOv8n-CMD算法相较于原模型的模型参数量和计算量分别减少了31.8%和7.4%, 精准度提高了3.0%, 更适合果园环境下的柑橘检测研究.