摘要:目前超分辨率重建技术运用于诸多场景, 但对于数字高程模型(digital elevation model, DEM)的重建存在许多挑战, 针对无法充分利用DEM复杂地形特征导致的细节缺失和失真问题, 提出了深度残差频率自适应的DEM超分辨重建模型, 由多个高低频特征提取模块组成残差网络结构, 提升对DEM特征的整体感知能力, 并加入频率选择特征提取模块, 增强对复杂地形特征的识别和捕捉能力, 其次在模型中加入了空洞空间金字塔池化, 通过融合多尺度信息, 改善重建质量并充分保留地形特征的细节和结构, 最终在梯度域和高度域双重约束下完成超分辨率重建. 实验结果表明, 在以两种精度的陕西秦岭高程图作为实验数据下, 深度残差频率自适应DEM超分辨率模型相较于其他先进模型, 在各个指标上均取得了提升, 重建后的DEM细节更加丰富、纹理更加清晰.