层聚合网络和跨阶段自适应空间特征融合的小目标检测
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(42365006); 江西省自然科学基金(20232BAB202040)


Small Object Detection Based on Layer Aggregation Network and Cross Stage-adaptive Spatial Feature Fusion
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    传统的目标检测算法存在检测效果不佳及检测效率低等问题, 针对这些问题, 提出了一种基于YOLOv7网络改进的小目标检测方法. 该方法在原网络的高效层聚合模块(efficient layer aggregation network, ELAN)中添加了更多路径, 且将不同路径中的特征信息有效融合后引入SKNet网络, 使得模型更加关注网络中不同尺度大小的特征, 提取出更多有效信息; 同时为了加强小目标对空间信息的感知能力, 设计了一个eSE模块连接在ELAN末端, 以此构建新的高效层聚合网络模块(enhanced features efficient layer aggregation network, EF-ELAN), 该模块完整地保留了图像特征信息, 提高了网络的泛化能力. 同时设计了一种CS-ASFF (cross stage-adaptively spatial feature fusion)模块来应对小目标检测出现的特征尺度不一致问题, 该模块基于 ASFF网络和Nest连接方式进行改进, 对特征金字塔的每一张图片进行卷积、池化等操作提取权重, 将特征信息作用在某一层上, 同时利用其余特征层来加强网络的特征处理能力. 实验结果表明, 本文提出的算法在DIOR数据集和DOTA数据集上的平均精准率分别提高了1.5%、2.1%, 实验结果验证了所提出的算法能够有效地提升小目标的检测效果.

    Abstract:

    Traditional object detection algorithms often face challenges such as poor detection performance and low detection efficiency. To address these problems, this study proposes a method for detecting small objects based on an improved YOLOv7 network. This method adds more paths to the efficient layer aggregation module (ELAN) of the original network and effectively integrates the feature information from different paths before introducing the selective kernel network (SKNet). This allows the model to pay more attention to features of different scales in the network and extract more useful information. To enhance the model’s perception of spatial information for small objects, an eSE module is designed and connected to the end of ELAN, thus forming a new efficient layer aggregation network module (EF-ELAN). This module preserves image feature information more completely and improves the generalization ability of the network. Additionally, a cross stage-adaptively spatial feature fusion module (CS-ASFF) is designed to address the issue of inconsistent feature scales in small object detection. This module is improved based on the ASFF network and the Nest connection method. It extracts weights through operations such as convolution and pooling on each image of the feature pyramid, applies the feature information to a specific layer, and utilizes other feature layers to enhance the network’s feature processing capabilities. Experimental results show that the proposed algorithm improves the average precision rate by 1.5% and 2.1% on the DIOR and DOTA datasets, respectively, validating its effectiveness in enhancing the detection performance of small objects.

    参考文献
    相似文献
    引证文献
引用本文

于龙昆,占强波,沈红,王子昊.层聚合网络和跨阶段自适应空间特征融合的小目标检测.计算机系统应用,2025,34(1):248-257

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-05-12
  • 最后修改日期:2024-06-04
  • 录用日期:
  • 在线发布日期: 2024-11-15
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号