摘要:传统的目标检测算法存在检测效果不佳及检测效率低等问题, 针对这些问题, 提出了一种基于YOLOv7网络改进的小目标检测方法. 该方法在原网络的高效层聚合模块(efficient layer aggregation network, ELAN)中添加了更多路径, 且将不同路径中的特征信息有效融合后引入SKNet网络, 使得模型更加关注网络中不同尺度大小的特征, 提取出更多有效信息; 同时为了加强小目标对空间信息的感知能力, 设计了一个eSE模块连接在ELAN末端, 以此构建新的高效层聚合网络模块(enhanced features efficient layer aggregation network, EF-ELAN), 该模块完整地保留了图像特征信息, 提高了网络的泛化能力. 同时设计了一种CS-ASFF (cross stage-adaptively spatial feature fusion)模块来应对小目标检测出现的特征尺度不一致问题, 该模块基于 ASFF网络和Nest连接方式进行改进, 对特征金字塔的每一张图片进行卷积、池化等操作提取权重, 将特征信息作用在某一层上, 同时利用其余特征层来加强网络的特征处理能力. 实验结果表明, 本文提出的算法在DIOR数据集和DOTA数据集上的平均精准率分别提高了1.5%、2.1%, 实验结果验证了所提出的算法能够有效地提升小目标的检测效果.