摘要:为解决低频、不规则时间周期的基于统计的电梯预测性维护问题, 本文提出了结合深度生存分析与数据切割、补偿的综合方案. 本文通过建立动态静态生存状态向量, 捕捉影响大型故障风险的因素; 此外, 针对记录型数据中存在的左删失问题, 本文采用数据补充的方式解决, 并探究不同补充方式与分割策略对深度生存模型精度的影响. 最后, 研究对电梯场景下的深度生存模型使用SHAP分析, 揭示各因素对故障风险的动态影响. 研究结果显示, 采用数据粗分割与Cox填充方式组合的模型具有强预测能力和准确性, DeepSurv模型在预测能力和稳定性上表现突出, 梯龄、提升高度对大型故障风险的贡献随特定条件的变化会发生转折.