基于改进RT-DETR的水下目标检测
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

湖北省教育厅项目(B2019077)


Underwater Target Detection Based on Improved RT-DETR
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    水下目标检测技术在海洋探测中具有重要的现实意义. 针对水下场景复杂, 以及存在遮挡重叠导致目标特征提取有限的问题, 提出了一种适用于水下目标检测的FERT-DETR网络. 该模型首先提出了一种特征提取模块Faster-EMA, 用于替换RT-DETR中ResNet18的BasicBlock, 能够在有效降低模型参数量和模型深度的同时, 显著提升对水下目标的特征提取能力; 其次在编码部分使用级联群体注意力模块AIFI-CGA, 减少多头注意力中的计算冗余, 提高注意力的多样性; 最后使用高水平筛选特征金字塔HS-FPN替换CCFM, 实现多层次融合, 提高检测的准确性和鲁棒性. 实验结果表明, 所提算法FERT-DETR在URPC2020数据集和DUO数据集上比RT-DETR检测准确率提高了3.1%和1.7%, 参数量压缩了14.7%, 计算量减少了9.2%, 能够有效改善水下复杂环境中不同尺寸目标漏检、误检的问题.

    Abstract:

    Underwater target detection has practical significance in ocean exploration. This study proposes a FERT-DETR network suitable for underwater target detection to address the issues of complex underwater environments and limited target feature extraction due to occlusion and overlap. The proposed model first introduces a feature extraction module, Faster EMA, to replace the BasicBlock of ResNet18 in RT-DETR, which can significantly improve its capability to extract features of underwater targets while effectively reducing the number of parameters and depth of the model. Secondly, a cascaded group attention module, AIFI-CGA, is used in the encoding part to reduce computational redundancy in multi-head attention and improve attention diversity. Finally, a feature pyramid for high-level filtering named HS-FPN is used to replace CCFM, achieving multi-level fusion and improving the accuracy and robustness of detection. The experimental results show that the proposed algorithm, FERT-DETR, improves detection accuracy by 3.1% and 1.7% compared to RT-DETR on the URPC2020 and DUO datasets respectively, compresses the number of parameters by 14.7%, and reduces computational complexity by 9.2%. It can effectively avoid missed and false detection of targets of different sizes in complex underwater environments.

    参考文献
    相似文献
    引证文献
引用本文

张路,魏本昌,魏鸿奥,周龙刚.基于改进RT-DETR的水下目标检测.计算机系统应用,2024,33(12):131-140

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-05-08
  • 最后修改日期:2024-05-29
  • 录用日期:
  • 在线发布日期: 2024-10-25
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号