摘要:保障选矿设备的精准维护和稳定运行一直是矿山相关企业所面临的重要课题, 而研发设备预测性维护系统已成为降低设备维护成本、提升企业生产效率的重要手段. 分析了选矿设备预测性维护系统功能需求, 设计了基于微服务结构的预测性维护系统架构和总体功能结构, 深入阐述了系统关键技术, 提出了基于多尺度CNN融合注意力机制的设备健康状态评估模型, 以及基于CNN和BiLSTM的电流趋势融合预测模型, 为设备预测性维护系统的构建提供了技术支撑. 在鞍钢集团关宝山矿业有限公司对完成的系统进行了应用示范, 并对提出的模型进行了测试. 结果表明提出的模型具有较高的准确性和健壮性, 优于现有模型; 完成的系统能够提供精准的设备维护计划, 降低了设备维护成本, 并提升了企业生产效率.