摘要:有效检测输电线路的破损和异物对电路智能巡检至关重要. 然而, 由于存在着数据孤岛问题, 难以收集不同电力公司的数据来训练统一的检测模型. 因此, 结合迁移联邦学习和目标检测算法提出了一种基于迁移联邦学习的电路缺陷检测方法. 具体地, 首先选用一个强大的检测模型作为基础检测模型, 并冻结模型初始权重. 然后通过权重矩阵的低秩分解以及插入适配器层的方式进行对不同客户端的数据进行适应学习, 从而大幅降低可训练模型参数的目的. 其次, 提出一种权重自适应筛选方法, 以精确确定模型权重层的低秩分解和适配器层的插入位置, 通过简单的适应学习, 即可对不同电力公司中的数据分布进行有效适应. 最后, 在接近真实环境的电力数据集上进行的实验验证表明, 在保证客户数据安全性和隐私性的前提下, 能够很好地适应不同分布的检测场景.