基于三维骨架的人体动作识别
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家重点研发计划(2020YFB1806504, 2023YFB3107203)


Human Action Recognition Based on 3D Skeleton
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 增强出版
  • |
  • 文章评论
    摘要:

    动作识别是计算机视觉领域的一项重要技术, 根据输入数据的不同可以分为基于视频的动作识别和基于骨架的动作识别. 三维骨架数据避免了光照、遮挡等因素的影响, 对动作的描述更准确. 现在, 基于三维骨架的人体动作识别受到重视. 基于三维骨架的人体动作识别方法可以分为端到端的黑盒方法和基于模式识别的白盒方法. 黑盒的深度学习方法参数大, 能从大量的数据中学到分类知识, 但是深度学习方法难解释, 只能给出整体识别结果. 白盒的模式识别法相比黑盒方法, 其识别过程可解释、算法易调整, 但是现有的一些白盒方法主要从算法层面进行改进, 用公式去表示和区分动作, 没有体现动作之间的区别和联系. 所以本文设计一个分类过程可见的白盒方法, 使用树结构将动作数据有层次的组织起来, 根据相同动作之间的差异构建个体分类层次结构, 根据不同动作之间的区别构建动作分类层次结构. 然后将各种衡量算法纳入系统中, 在本文中选择最近邻和动态时间规整算法进行实验. 层次结构的优点是可以根据需求植入各种知识, 这样可以从不同的角度对动作进行分类. 在本文实验中, 向层次结构植入动作关键姿态知识和人体结构知识, 随着知识的植入, 层次结构也会发生变化.

    Abstract:

    Action recognition is an important technology in computer vision, which can be categorized into video-based and skeleton-based action recognition according to different input data. The 3D skeleton data avoids the influence of illumination, occlusion, and other factors, yielding more accurate action descriptions. Now, human action recognition based on 3D skeleton has been paid more attention. Methods for human action recognition based on a 3D skeleton can be divided into the end-to-end black-box method and the pattern recognition-based white-box method. The black-box method in deep learning involves large parameters and can learn classification knowledge from a large amount of data. However, deep learning is difficult to explain and can only provide an overall recognition result. Compared with the black-box method, the white-box method has an explainable recognition process and an adjustable algorithm. Nevertheless, some white-box methods only focus on algorithmic improvements, using formulas to represent and classify actions, without reflecting the difference and connection among actions. Therefore, this study designs a white-box method with a visible classification process. This method uses a tree structure to organize action data hierarchically, constructing an individual classification hierarchy according to the differences between the same actions and an action classification hierarchy according to the discrepancies among different actions. Various measurement algorithms are also incorporated into the system. This study selects the nearest neighbor and dynamic time warping algorithms for experiments. The advantage of a hierarchical structure is that a variety of knowledge can be implanted to it according to various requirements so that actions can be classified from different perspectives. In the experiments, key posture knowledge and human body structure knowledge are implanted into the hierarchy structure. With the implantation of knowledge, the hierarchy structure dynamically changes.

    参考文献
    相似文献
    引证文献
引用本文

周小坡,张立武,张严.基于三维骨架的人体动作识别.计算机系统应用,,():1-12

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-03-04
  • 最后修改日期:2024-05-06
  • 录用日期:
  • 在线发布日期: 2024-08-21
  • 出版日期:
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号