基于上下文多摇臂赌博机的交通信号控制算法
作者:
基金项目:

国家自然科学基金面上项目(62172386); 江苏省自然科学基金面上项目(BK20231212)


Traffic Signal Control Algorithm Based on Contextual Multi-armed Bandit
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [19]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    近年来, 由于交通拥堵问题日益严重, 引起了学术界对交通信号灯控制算法研究的广泛关注. 现有研究表明, 基于深度强化学习(DRL)的方法在模拟环境中表现良好, 但在实际应用中存在着数据和计算资源需求大、难以实现路口之间协同等问题. 为解决这一问题, 本文提出了一种基于上下文多摇臂赌博机的新型交通信号控制算法. 与传统方法相比, 本文所提算法通过从路网中提取主干道的方式, 实现了路口之间的高效协同, 并利用上下文多摇臂赌博机模型实现了交通信号的快速、有效控制. 最后, 通过在真实数据集以及合成数据集上进行充分的实验验证, 证明了本文算法相较于过去算法的优越性.

    Abstract:

    In recent years, the exacerbation of traffic congestion has sparked widespread interest in the research on traffic signal control algorithms. Current studies indicate that methods based on deep reinforcement learning (DRL) exhibit promising performance in simulated environments. However, challenges persist in their practical application, including substantial requirements for data and computational resources, as well as difficulties in achieving coordination between intersections. To address these challenges, this study proposes a novel traffic signal control algorithm based on a contextual multi-armed bandit model. In contrast to conventional algorithms, the proposed algorithm achieves efficient coordination between intersections by extracting the main arteries from the road network. Moreover, it employs a contextual multi-armed bandit model to facilitate rapid and effective traffic signal control. Finally, through extensive experimentation on both real and synthetic datasets, the superiority of the proposed algorithm over previous algorithms is empirically demonstrated.

    参考文献
    [1] Samaras C. Mesoscale modeling of the impacts of congestion and ITS measures on vehicle energy consumption and greenhouse gas emissions over urban road networks [Ph.D. Thesis]. Thessaloniki: Aristotle University of Thessaloniki, 2020.
    [2] 秦娟. 共享出行对城市交通拥堵的缓解作用研究 [博士学位论文]. 哈尔滨: 哈尔滨工业大学, 2021.
    [3] 段春利. 我国智慧交通发展现状及应用技术研究. 智能建筑与智慧城市, 2021(11): 160–161.
    [4] Sims AG, Dobinson KW. The Sydney coordinated adaptive traffic (SCAT) system philosophy and benefits. IEEE Transactions on Vehicular Technology, 1980, 29(2): 130–137.
    [5] Hunt PB, Robertson DI, Bretherton RD, et al. The SCOOT on-line traffic signal optimisation technique. Traffic Engineering & Control, 1982, 23(4): 190–192.
    [6] Gokulan BP, Srinivasan D. Distributed geometric fuzzy multiagent urban traffic signal control. IEEE Transactions on Intelligent Transportation Systems, 2010, 11(3): 714–727.
    [7] Teodorović D. Swarm intelligence systems for transportation engineering: Principles and applications. Transportation Research Part C: Emerging Technologies, 2008, 16(6): 651–667.
    [8] Zheng GJ, Zang XS, Xu N, et al. Diagnosing reinforcement learning for traffic signal control. arXiv:1905.04716, 2019.
    [9] Wei H, Zheng GJ, Yao HX, et al. IntelliLight: A reinforcement learning approach for intelligent traffic light control. Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. London: ACM, 2018. 2496–2505.
    [10] Chu TS, Wang J, Codecà L, et al. Multi-agent deep reinforcement learning for large-scale traffic signal control. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(3): 1086–1095.
    [11] Wei H, Chen CC, Zheng GJ, et al. PressLight: Learning max pressure control to coordinate traffic signals in arterial network. Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. Anchorage: ACM, 2019. 1290–1298.
    [12] Nishi T, Otaki K, Hayakawa K, et al. Traffic signal control based on reinforcement learning with graph convolutional neural nets. Proceedings of the 21st International Conference on Intelligent Transportation Systems. Maui: IEEE, 2018. 877–883.
    [13] Xiong YH, Zheng GJ, Xu K, et al. Learning traffic signal control from demonstrations. Proceedings of the 28th ACM International Conference on Information and Knowledge Management. Beijing: ACM, 2019. 2289–2292.
    [14] Wei H, Xu N, Zhang HC, et al. CoLight: Learning network-level cooperation for traffic signal control. Proceedings of the 28th ACM International Conference on Information and Knowledge Management. Beijing: ACM, 2019. 1913–1922.
    [15] Slivkins A. Introduction to multi-armed bandits. Foundations and Trends® in Machine Learning, 2019, 12(1–2): 1–286.
    [16] Roess RP, Prassas ES, McShane WR. Traffic Engineering, 3rd ed., Upper Saddle River: Prentice Hall, 2004.
    [17] Zhang HC, Feng SY, Liu C, et al. CityFlow: A multi-agent reinforcement learning environment for large scale city traffic scenario. Proceedings of the 2019 World Wide Web Conference. San Francisco: ACM, 2019. 3620–3624.
    [18] Mei H, Lei XL, Da LC, et al. Libsignal: An open library for traffic signal control. Machine Learning, 2023.
    [19] Varaiya P. Max pressure control of a network of signalized intersections. Transportation Research Part C: Emerging Technologies, 2013, 36: 177–195.
    相似文献
    引证文献
引用本文

邵俊杰,肖明军.基于上下文多摇臂赌博机的交通信号控制算法.计算机系统应用,2024,33(10):183-189

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-02-23
  • 最后修改日期:2024-05-06
  • 在线发布日期: 2024-08-28
文章二维码
您是第11340392位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号