摘要:针对现有水下图像增强算法不能感知降质, 易丢失细节, 无法有效纠正色偏等问题, 提出了降质感知的小波变换水下图像增强网络模型. 该模型主要包含对比学习的降质表征提取网络和多级小波变换的水下图像增强网络. 首先, 降质表征提取网络利用编码器和对比学习的方法, 从每张水下图像中提取特有的降质表征; 随后, 以多级小波变换增强算法为指导思想, 构建三级小波变换模块, 旨在从频率域上实施多尺度的细节和颜色增强; 最后, 构建基于三级小波变换模块的多级小波变换增强网络, 并将提取的降质表征引入到该网络中, 以便在感知降质信息后, 更好地实施多级小波变换增强. 实验结果表明, 本算法较已有算法具有更强的颜色校正, 细节增强能力, 增强结果在结构相似性指标上提升16%, 峰值信噪比指标上提升9%, 水下图像质量指标上提升14%, 能用于水下图像增强任务.