基于ViT-D-UNet的双分支遥感云影检测网络
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(61671010)


Bi-branch Remote Sensing Cloud and Shadow Detection Network Based on ViT-D-UNet
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 增强出版
  • |
  • 文章评论
    摘要:

    云及其阴影的有效分割是遥感图像处理领域中重要的问题, 它对于地表特征提取、气候检测、大气校正等有很大帮助. 然而云和云影遥感图像特征复杂, 云分布多样不规则, 且边界信息模糊易受背景干扰等特点, 导致其特征难以准确提取, 也少有专门为其设计的网络. 针对以上问题, 本文提出一种ViT (vision Transformer)和D-UNet双路网络. 本文网络分为两个分支: 一路是基于卷积的局部特征提取模块, 在D-UNet的膨胀卷积模块基础上, 引入深度可分离卷积, 提取多尺度特征的同时, 减少参数; 另一路通过ViT在全局上理解上下文语义, 加深对整体特征提取. 两支路间存在信息交互, 完善提取的特征信息. 最后通过独特设计的融合特征解码器, 进行上采样, 减少信息丢失. 模型在自建的云和云影数据集以及HRC_WHU公开数据集上取得优越的性能, 在MIoU指标上分别领先次优模型0.52%和0.44%, 达到了92.05%和85.37%.

    Abstract:

    Effective segmentation of clouds and their shadows is a critical issue in the field of remote sensing image processing. It plays a significant role in surface feature extraction, climate detection, atmospheric correction, and more. However, the complex features of clouds and cloud shadows in remote sensing images, characterized by their diverse, irregular distributions and fuzzy boundary information that is easily disturbed by the background, make accurate feature extraction challenging. Moreover, there are few networks specifically designed for this task. To address these issues, this study proposes a dual-path network combining vision Transformer (ViT) and D-UNet. The network is divided into two branches: one is a convolutional local feature extraction module based on the dilated convolution module of D-UNet, which introduces a multi-scale atrous spatial pyramid pooling (ASPP) to extract multi-dimensional features; the other branch comprehends the context semantics globally through the Vision Transformer, enhancing feature extraction. Finally, the study performs an upsampling through a feature fusion decoder. The model achieves superior performance on both a self-built dataset of clouds and cloud shadows and the publicly available HRC_WHU dataset, leading the second-best model by 0.52% and 0.44% in the MIoU metric, achieving 92.05% and 85.37%, respectively.

    参考文献
    相似文献
    引证文献
引用本文

李远禄,王键翔,范小婷,周昕,吴明轩.基于ViT-D-UNet的双分支遥感云影检测网络.计算机系统应用,,():1-10

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-02-28
  • 最后修改日期:2024-03-28
  • 录用日期:
  • 在线发布日期: 2024-06-28
  • 出版日期:
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号