摘要:人脸识别技术的恶意运用可能会导致个人信息泄露, 对个人隐私安全构成巨大威胁, 通过通用对抗攻击保护人脸隐私具有重要的研究意义. 然而, 现有的通用对抗攻击算法多数专注于图像分类任务, 应用于人脸识别模型时, 常面临攻击成功率低和生成扰动明显等问题. 为解决这一挑战, 研究提出了一种基于共性梯度的人脸识别通用对抗攻击方法. 该方法通过多张人脸图像的对抗扰动的共性梯度优化通用对抗扰动, 并利用主导型特征损失提升扰动的攻击能力, 结合多阶段训练策略, 实现了攻击效果与视觉质量的均衡. 在公开数据集上的实验证明, 该方法在人脸识别模型上的攻击性能优于Cos-UAP、SGA等方法, 并且生成的对抗样本具有更好的视觉效果, 表明了所提方法的有效性.