基于渐进式分解架构的风电时间序列预测
作者:
基金项目:

国家自然科学基金面上项目(62076045); 辽宁省教育厅揭榜挂帅服务地方项目(LJKFZ20220290); 大连大学学科交叉项目(DLUXK-2023-YB-003, DLUXK-2023-YB-009, DLUXK-2022-ZD-003); 高等学校学科创新引智计划(D23006)


Time Series Forecasting of Wind Power Based on Progressive Decomposition Architecture
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [26]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    准确预测风电机组各项指标对准确管控机组和调控电网的供需有着重要意义. 预测指标任务可抽象为风电时间序列预测任务. 目前时间序列预测模型主要采用深度学习模型, 但是风电时间序列具有较强的波动性和随机性, 导致绝大部分模型不能较好挖掘风电时间序列的复杂演化特性. 为解决上述问题, 提出了一种基于渐进式分解架构的风电时间序列预测方法, 该方法首先应用神经网络池化分解方法将复杂的依赖关系简化并应用注意力机制学习长期趋势, 然后运用多变量融合捕捉模块增强了网络整体的多变量关联挖掘能力, 最后, 融合趋势项和周期项对风电时间序列做出准确的预测. 实验结果表明, 该方法在风电时间序列的多步预测中均方误差相比基线模型至高可提升24%, 在多尺度预测长度下表现出预测性能稳定提升的同时, 计算效率显著优于同类模型.

    Abstract:

    Accurate prediction of wind turbine metrics is important for accurate control of turbines and the regulation of grid supply and demand. The task of forecasting these indicators can be abstracted as a task of wind power time series forecasting. Currently, deep learning models are mainly used in time series prediction models, but the strong volatility and randomness of wind power time series often prevent most models from effectively capturing the complex evolutionary characteristics of the data. To address these issues, a wind power time series forecasting method based on a progressive decomposition architecture is proposed, which first applies a neural network pooling decomposition method to simplify complex dependencies and then applies an attention mechanism to learn long-term trends. Subsequently, a multivariate fusion capture module is employed to enhance the overall multivariate correlation mining ability of the network, and it fuses the trend term and the period term to make accurate forecasts of the wind power time series. Finally, the trend and period terms are fused to make accurate forecasts for wind power time series. Experimental results show that this method can achieve up to a 24% reduction in mean squared error (MSE) for wind power time series forecasting compared to baseline models. It also exhibits stable improvements in predictive performance across multiple forecasting lengths while significantly outperforming similar models in computational efficiency.

    参考文献
    [1] 米阳, 卢长坤, 申杰, 等. 基于条件生成对抗网络的风电功率极端场景生成. 高电压技术, 2023, 49(6): 2253–2263.
    [2] 冯双磊, 王伟胜, 刘纯, 等. 风电场功率预测物理方法研究. 中国电机工程学报, 2010, 30(2): 1–6.
    [3] 孙荣富, 张涛, 和青, 等. 风电功率预测关键技术及应用综述. 高电压技术, 2021, 47(4): 1129–1143.
    [4] 李练兵, 高国强, 吴伟强, 等. 考虑特征重组与改进Transformer的风电功率短期日前预测方法. 电网技术, 2023: 1–13.
    [5] Hodge BM, Zeiler A, Brooks D, et al. Improved wind power forecasting with ARIMA models. Computer Aided Chemical Engineering, 2011, 29: 1789–1793.
    [6] Dhiman HS, Deb D, Guerrero JM. Hybrid machine intelligent SVR variants for wind forecasting and ramp events. Renewable and Sustainable Energy Reviews, 2019, 108: 369–379.
    [7] Ye L, Li YL, Pei M, et al. A novel integrated method for short-term wind power forecasting based on fluctuation clustering and history matching. Applied Energy, 2022, 327: 120131.
    [8] Zeng AL, Chen MX, Zhang L, et al. Are transformers effective for time series forecasting? Proceedings of the 37th AAAI Conference on Artificial Intelligence. Washington: AAAI, 2023. 11121–11128.
    [9] 谢丽蓉, 王斌, 包洪印, 等. 基于EEMD-WOA-LSSVM的超短期风电功率预测. 太阳能学报, 2021, 42(7): 290–296.
    [10] 王涛, 高靖, 王优胤, 等. 基于改进经验模态分解和支持向量机的风电功率预测研究. 电测与仪表, 2021, 58(6): 49–54.
    [11] Lu P, Ye L, Pei M, et al. Short-term wind power forecasting based on meteorological feature extraction and optimization strategy. Renewable Energy, 2022, 184: 642–661.
    [12] Shao Z, Han J, Zhao W, et al. Hybrid model for short-term wind power forecasting based on singular spectrum analysis and a temporal convolutional attention network with an adaptive receptive field. Energy Conversion and Management, 2022, 269: 116138.
    [13] Wu HX, Xu JH, Wang JM, et al. Autoformer: Decomposition transformers with auto-correlation for long-term series forecasting. Proceedings of the 35th Conference on Neural Information Processing Systems. 2021. 22419–22430.
    [14] Ewees AA, Al-Qaness MAA, Abualigah L, et al. HBO-LSTM: Optimized long short term memory with heap-based optimizer for wind power forecasting. Energy Conversion and Management, 2022, 268: 116022.
    [15] 杨京渝, 罗隆福, 阳同光, 等. 基于气象特征挖掘和改进深度学习模型的风电功率短期预测. 电力自动化设备, 2023, 43(3): 110–116.
    [16] Ko MS, Lee K, Kim JK, et al. Deep concatenated residual network with bidirectional LSTM for one-hour-ahead wind power forecasting. IEEE Transactions on Sustainable Energy, 2021, 12(2): 1321–1335.
    [17] 苏向敬, 周汶鑫, 李超杰, 等. 基于双重注意力LSTM神经网络的可解释海上风电出力预测. 电力系统自动化, 2022, 46(7): 141–151.
    [18] Liang JK, Tang WY. Ultra-short-term spatiotemporal forecasting of renewable resources: An attention temporal convolutional network-based approach. IEEE Transactions on Smart Grid, 2022, 13(5): 3798–3812.
    [19] Ma ZJ, Mei G. A hybrid attention-based deep learning approach for wind power prediction. Applied Energy, 2022, 323: 119608.
    [20] Qin Y, Song DJ, Chen HF, et al. A dual-stage attention-based recurrent neural network for time series prediction. Proceedings of the 26th International Joint Conference on Artificial Intelligence. Melbourne: IJCAI.org, 2017. 2627–2633.
    [21] Huang ST, Wang DL, Wu XH, et al. DSANet: Dual self-attention network for multivariate time series forecasting. Proceedings of the 28th ACM International Conference on Information and Knowledge Management. Beijing: ACM, 2019. 2129–2132.
    [22] Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need. Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach: Curran Associates Inc., 2017. 6000–6010.
    [23] Zhou HY, Zhang SH, Peng JQ, et al. Informer: Beyond efficient Transformer for long sequence time-series forecasting. Proceedings of the 35th AAAI Conference on Artificial Intelligence. AAAI, 2021. 11106–11115.
    [24] Sun M, Lan L, Zhu CG, et al. Cubic spline interpolation with optimal end conditions. Journal of Computational and Applied Mathematics, 2023, 425: 115039.
    [25] Zhou T, Ma ZQ, Wen QS, et al. FEDformer: Frequency enhanced decomposed Transformer for long-term series forecasting. Proceedings of the 39th International Conference on Machine Learning (ICML). Baltimore: PMLR, 2022. 27268–27286.
    [26] Fu R, Zhang Z, Li L. Using LSTM and GRU neural network methods for traffic flow prediction. Proceedings of the 31st Youth Academic Annual Conference of Chinese Association of Automation. Wuhan: IEEE, 2016. 324–328.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

丁浩,周成杰,车超,赵天明,周守亮.基于渐进式分解架构的风电时间序列预测.计算机系统应用,2024,33(7):112-120

复制
分享
文章指标
  • 点击次数:469
  • 下载次数: 1264
  • HTML阅读次数: 706
  • 引用次数: 0
历史
  • 收稿日期:2024-01-15
  • 最后修改日期:2024-02-26
  • 在线发布日期: 2024-05-31
文章二维码
您是第12460332位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号