摘要:针对现有基于填表的事件关系抽取方法填表数目过多、表格特征获取不充分的问题, 本文提出了结合Roberta和Bi-FLASH-SRU的中文事件因果关系抽取方法TF-ChineseERE. 该方法通过制定填表策略, 利用文本中已标记关系, 将其转化为带有标签的表格; 借助Roberta预训练模型和本文提出的双向内置闪电注意力简单循环单元(bidirectional built-in flash attention simple recurrent unit, Bi-FLASH-SRU)获取主客体事件特征, 再利用表格特征循环学习模块挖掘全局特征, 最后进行表格解码获得事件因果关系三元组. 实验采用金融领域两个公开数据集进行验证, 结果表明, 本文提出的方法F1值分别达到59.2%和62.5%, 且Bi-FLASH-SRU模型训练速度更快, 填表数目更少, 证明了该方法的有效性.