摘要:随着合成孔径雷达(SAR)技术的不断进步, 大范围观测和高分辨率成像使得SAR图像中包含了大量特征微弱的小尺寸目标, 通常涵盖飞机、车辆、油罐、船舶等高价值民用目标和关键军事目标, 这类目标尺寸较小、特征微弱、稠密相连、形态多变, 对它们进行精确的检测是当前SAR图像解译的难题. 随着深度学习技术的发展, 研究者们针对SAR弱小目标的成像特性和检测挑战, 通过对深度学习网络的精细调整和优化, 成功地推动了本领域的进步. 本文将全面回顾基于深度学习的SAR图像弱小目标检测, 以数据集和方法为研究对象, 深入分析SAR弱小目标检测任务所面临的主要挑战, 总结最新检测方法的特点和应用场景, 并汇总整理了公开数据集与常用性能评估指标. 最后, 总结本任务的应用现状, 并对未来的发展趋势进行展望.