基于对比学习和伪异常合成的无监督火灾检测
作者:
基金项目:

国家自然科学基金(61972187)


Unsupervised Fire Detection Based on Contrastive Learning and Synthetic Pseudo Anomalies
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [23]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    传统的火灾检测方法大多基于目标检测技术, 存在火灾样本获取难度高、人工标注成本高的问题. 为解决该问题, 本研究提出了一种基于对比学习和伪异常合成的无监督火灾检测模型. 为了实现无监督图像特征学习, 提出了交叉输入对比学习模块. 然后, 引入了一个记忆原型学习正常场景图像的特征分布, 通过特征重建实现对火灾场景的判别. 并且, 提出了伪异常火灾场景合成方法和基于欧氏距离的异常特征区分损失, 使模型对于火灾场景具有针对性. 根据实验表明, 我们的方法在Fire-Flame-Dataset和Fire-Detection-Image-Dataset两个公开火灾检测数据集上的图像级AUC分别达到89.86%和89.56%, 优于PatchCore、PANDA、Mean-Shift等主流图像异常检测算法.

    Abstract:

    Traditional fire detection methods are mostly based on object detection techniques, which suffer from difficulties in acquiring fire samples and high manual annotation costs. To address this issue, this study proposes an unsupervised fire detection model based on contrastive learning and synthetic pseudo anomalies. A cross-input contrastive learning module is proposed for achieving unsupervised image feature learning. Then, a memory prototype that learns the feature distribution of normal scene images to discriminate fire scenes through feature reconstruction is introduced. Moreover, a method for synthesizing pseudo anomaly fire scenes and an anomaly feature discrimination loss based on Euclidean distance are proposed, making the model more targeted toward fire scenes. Experimental results demonstrate that the proposed method achieves an image-level AUC of 89.86% and 89.56% on the publicly available Fire-Flame-Dataset and Fire-Detection-Image-Dataset, respectively, surpassing mainstream image anomaly detection algorithms such as PatchCore, PANDA, and Mean-Shift.

    参考文献
    [1] 祝玉华, 司艺艺, 李智慧. 基于深度学习的烟雾与火灾检测算法综述. 计算机工程与应用, 2022, 58(23): 1–11.
    [2] Barmpoutis P, Dimitropoulos K, Kaza K, et al. Fire detection from images using Faster R-CNN and multidimensional texture analysis. Proceedings of the 2019 IEEE International Conference on Acoustics, Speech and Signal Processing. Brighton: IEEE, 2019. 8301–8305.
    [3] Zhao L, Zhi LQ, Zhao C, et al. Fire-YOLO: A small target object detection method for fire inspection. Sustainability, 2022, 14(9): 4930.
    [4] Zhang SJG, Zhang FX, Ding YY, et al. Swin-YOLOv5: Research and application of fire and smoke detection algorithm based on YOLOv5. Computational Intelligence and Neuroscience, 2022, 2022: 6081680.
    [5] 张旭彤, 胡鹏, 赵鑫, 等. 火灾预警中基于YOLO v5的火源智能检测定位方法. 微电子学与计算机, 2023, 40(3): 67–74.
    [6] Talaat FM, ZainEldin H. An improved fire detection approach based on YOLO-v8 for smart cities. Neural Computing and Applications, 2023, 35(28): 20939–20954.
    [7] Lu KJ, Huang JW, Li JH, et al. MTL-FFDET: A multi-task learning-based model for forest fire detection. Forests, 2022, 13(9): 1448.
    [8] 汪子健, 高焕兵, 侯宇翔, 等. 改进YOLOX-Nano的火灾火焰烟雾检测. 计算机系统应用, 2023, 32(3): 265–274.
    [9] Huang JR, He ZL, Guan YW, et al. Real-time forest fire detection by ensemble lightweight YOLOX-L and defogging method. Sensors, 2023, 23(4): 1894.
    [10] Redmon J, Divvala S, Girshick R, et al. You only look once: Unified, real-time object detection. Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016. 779–788.
    [11] Ren SQ, He KM, Girshick R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks. Proceedings of the 28th International Conference on Neural Information Processing Systems. Montreal: ACM, 2015. 91–99.
    [12] 宋焕生, 文雅, 孙士杰, 等. 基于改进教师学生网络的隧道火灾检测. 图学学报, 2023, 44(5): 978–987.
    [13] Buza E, Akagic A. Unsupervised method for wildfire flame segmentation and detection. IEEE Access, 2022, 10: 55213–55225.
    [14] Ajith M, Martínez-Ramón M. Unsupervised segmentation of fire and smoke from infra-red videos. IEEE Access, 2019, 7: 182381–182394.
    [15] 李权威, 宛田宾, 秦俊, 等. 基于Dignet无监督学习聚类算法的智能火灾探测. 中国科学技术大学学报, 2009, 39(7): 769–776, 782.
    [16] Yang XB, Wang Y, Liu XD, et al. High-precision real-time forest fire video detection using one-class model. Forests, 2022, 13(11): 1826.
    [17] Ning HY, Quan D, Zhang XR, et al. Unsupervised outlier detection using memory and contrastive learning. IEEE Transactions on Image Processing, 2022, 31: 6440–6454.
    [18] He KM, Fan HQ, Wu YX, et al. Momentum contrast for unsupervised visual representation learning. Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020. 9726–9735.
    [19] Caron M, Misra I, Mairal J, et al. Unsupervised learning of visual features by contrasting cluster assignments. Proceedings of the 34th International Conference on Neural Information Processing Systems. Vancouver: ACM, 2020. 831.
    [20] Astrid M, Zaheer MZ, Lee SI. Synthetic temporal anomaly guided end-to-end video anomaly detection. Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Montreal: IEEE, 2021. 207–214.
    [21] Reiss T, Cohen N, Bergman L, et al. PANDA: Adapting pretrained features for anomaly detection and segmentation. Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021. 2805–2813.
    [22] Roth K, Pemula L, Zepeda J, et al. Towards total recall in industrial anomaly detection. IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans: IEEE, 2022. 14298–14308.
    [23] Reiss T, Hoshen Y. Mean-shifted contrastive loss for anomaly detection. Proceedings of the 2023 AAAI Conference on Artificial Intelligence. Washington: AAAI, 2023. 2155–2162.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

叶伟华,吴云涛,李佐勇.基于对比学习和伪异常合成的无监督火灾检测.计算机系统应用,2024,33(6):28-36

复制
分享
文章指标
  • 点击次数:414
  • 下载次数: 1141
  • HTML阅读次数: 755
  • 引用次数: 0
历史
  • 收稿日期:2023-12-14
  • 最后修改日期:2024-01-17
  • 在线发布日期: 2024-04-30
文章二维码
您是第11349737位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号