摘要:小目标检测作为目标检测中一项极具挑战性的项目, 广泛分布于日常生活中, 在视频监控场景中, 距离摄像头约20 m远处的行人人脸就可以被认为是小目标. 由于人脸可能相互遮挡并容易受到噪声和天气光照条件的影响, 现有的目标检测模型在这类小目标上的性能劣于中大型目标. 针对此类问题, 本文提出了改进后的YOLOv7模型, 添加了高分辨率检测头, 并基于GhostNetV2对骨干网络进行了改造; 同时基于BiFPN和SA注意力模块替换PANet结构, 增强多尺度特征融合能力; 结合Wasserstein距离改进了原来的CIoU损失函数, 降低了小目标对锚框位置偏移的敏感性. 本文在公开数据集VisDrone2019以及自制的视频监控数据集上进行了对比实验. 实验表明, 本文提出的改进方法mAP指标在VisDrone2019数据集上提高到了50.1%, 在自制视频监控数据集上高于现有方法1.6个百分点, 有效提高了小目标检测的能力, 并在GTX1080Ti上达到了较好的实时性.