反向目标干扰的图像数据增强
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

辽宁省自然科学基金(20170540426); 辽宁省教育厅重点基金(LJYL049)


Inverse Target Interference for Image Data Augmentation
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    混合样本数据增强方法只注重模型对于图像所属类别的正向表达, 而忽略图像是否属于某一类别的反向判定. 为了解决描述图像类别方式单一而影响模型性能的问题, 提出一种反向目标干扰的图像数据增强方法. 该方法增加图像背景及目标的多样性, 防止网络模型过拟合. 其次采用反向学习机制, 让网络模型在正确辨别原图像所属类别的同时, 对填充图像不属于该类别的属性进行充分学习, 从而增强网络模型对原图像所属类别辨识的置信度. 最后, 为验证该方法的有效性, 使用不同的网络模型在CIFAR-10、CIFAR-100等5个数据集上进行大量实验. 实验结果表明, 本文方法与其他先进的数据增强方法相比较, 可以显著提高模型在复杂背景下的学习效果和泛化能力.

    Abstract:

    Mixed sample data enhancement methods focus only on the model’s forward representation of the category to which the image belongs while ignoring the reverse determination of whether the image belongs to a specific category. To address the problem of uniquely describing image categories and affecting model performance, this study proposes a method of image data augmentation with inverse target interference. To prevent overfitting of the network model, the method first modifies the original image to increase the diversity of background and target images. Secondly, the idea of reverse learning is adopted to enable the network model to correctly identify the category that the original image belongs to while fully learning the attributes of the populated image that do not belong to that category to increase the confidence of the network model in identifying the category that the original image belongs to. In conclusion, to verify the method’s effectiveness, the study utilizes different network models to perform many experiments on five datasets including CIFAR-10 and CIFAR-100. Experimental results show that compared to other state-of-the-art data augmentation methods, the proposed method can significantly enhance the model’s learning effect and generalization ability in complex settings.

    参考文献
    相似文献
    引证文献
引用本文

袁姮,胡月,张晟翀.反向目标干扰的图像数据增强.计算机系统应用,2024,33(6):48-57

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-12-03
  • 最后修改日期:2023-12-29
  • 录用日期:
  • 在线发布日期: 2024-04-19
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号