摘要:混合样本数据增强方法只注重模型对于图像所属类别的正向表达, 而忽略图像是否属于某一类别的反向判定. 为了解决描述图像类别方式单一而影响模型性能的问题, 提出一种反向目标干扰的图像数据增强方法. 该方法增加图像背景及目标的多样性, 防止网络模型过拟合. 其次采用反向学习机制, 让网络模型在正确辨别原图像所属类别的同时, 对填充图像不属于该类别的属性进行充分学习, 从而增强网络模型对原图像所属类别辨识的置信度. 最后, 为验证该方法的有效性, 使用不同的网络模型在CIFAR-10、CIFAR-100等5个数据集上进行大量实验. 实验结果表明, 本文方法与其他先进的数据增强方法相比较, 可以显著提高模型在复杂背景下的学习效果和泛化能力.