基于残差与小波U-Net的视网膜图像分割
作者:
基金项目:

国家自然科学基金 (6186603)


U-Net Based on Residual and Wavelet for Retinal Image Segmentation
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [26]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    视网膜血管分割是医学图像分割中常见的一项任务, 视网膜血管图像有着分割目标小而多的特点, 过去的网络在分割中可以较好地提取粗血管, 但是很容易忽略细血管, 而这部分细血管的提取在一定程度上影响网络的性能, 甚至是诊断的结果. 因此, 为了达到在保证准确提取粗血管的前提下, 提取到更多更连续的细血管的目标, 本文使用对称编解码网络作为基础网络, 使用一种新的卷积模块DR-Conv, 旨在防止过拟合的同时提高网络的学习能力. 同时, 针对最大池化层造成的信息损失问题, 考虑使用小波变换进行图像分解并使用逆小波变换对图像进行恢复, 利用混合损失函数结合不同损失函数的特性以弥补单个损失函数优化能力不足的问题. 为了评估网络的性能, 在3个公共视网膜血管数据集上分别对网络进行了测试, 并与最新方法进行了比较, 实验结果表明本文网络拥有更优的性能.

    Abstract:

    Retinal vessel segmentation is a common task in medical image segmentation. Retinal vessel images have the characteristic of small and multiple segmentation targets. In the past, networks could effectively extract coarse blood vessels in segmentation. However, it is easy to overlook small blood vessels, the extraction of which affects the performance of the network to some extent, and even the diagnostic results. Therefore, to extract more continuous fine blood vessels while ensuring the accurate extraction of coarse blood vessels, this study uses a symmetric encoder-decoder network as the basic network and a new convolution module, DR-Conv, to prevent overfitting while improving the learning capability of the network. In the process, regarding the information loss caused by the max-pooling layer, the study uses discrete wavelet transform for image decomposition and inverse discrete wavelet transform for image reconstruction and utilizes mixed loss functions to combine the characteristics of different loss functions to compensate for the insufficient optimization ability of a single loss function. It checks the performance of the network on three public retinal vessel datasets and compares it with the latest networks, showing better performance of the proposed network.

    参考文献
    [1] Sule OO. A survey of deep learning for retinal blood vessel segmentation methods: Taxonomy, trends, challenges and future directions. IEEE Access, 2022, 10: 38202–38236.
    [2] Chen CH, Chuah JH, Ali R, et al. Retinal vessel segmentation using deep learning: A review. IEEE Access, 2021, 9: 111985–112004.
    [3] Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Boston: IEEE, 2015. 3431–3440.
    [4] Ronneberger O, Fischer P, Brox T. U-Net: Convolutional networks for biomedical image segmentation. Proceedings of the 18th International Conference on Medical Image Computing and Computer-assisted Intervention. Munich: Springer, 2015. 234–241.
    [5] Maji D, Sigedar P, Singh M. Attention res-UNet with guided decoder for semantic segmentation of brain tumors. Biomedical Signal Processing and Control, 2022, 71: 103077.
    [6] Jin QG, Meng ZP, Pham TD, et al. DUNet: A deformable network for retinal vessel segmentation. Knowledge-based Systems, 2019, 178: 149–162.
    [7] Yang X, Li ZQ, Guo YQ, et al. DCU-Net: A deformable convolutional neural network based on cascade U-Net for retinal vessel segmentation. Multimedia Tools and Applications, 2022, 81(11): 15593–15607.
    [8] Liu YH, Shen J, Yang L, et al. ResDO-UNet: A deep residual network for accurate retinal vessel segmentation from fundus images. Biomedical Signal Processing and Control, 2023, 79: 104087.
    [9] Ghiasi G, Lin TY, Le QV. DropBlock: A regularization method for convolutional networks. Proceedings of the 32nd International Conference on Neural Information Processing Systems. Montréal: Curran Associates Inc., 2018. 10750–10760.
    [10] He KM, Zhang XY, Ren SQ, et al. Deep residual learning for image recognition. Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas: IEEE, 2016. 770–778.
    [11] Li D, Dharmawan DA, Ng BP, et al. Residual U-Net for retinal vessel segmentation. Proceedings of the 2019 IEEE International Conference on Image Processing (ICIP). Taipei: IEEE, 2019. 1425–1429.
    [12] Zhang JX, Jiang ZK, Dong J, et al. Attention gate ResU-Net for automatic MRI brain tumor segmentation. IEEE Access, 2020, 8: 58533–58545.
    [13] Cao JM, Li YY, Sun MC, et al. Do-conv: Depthwise over-parameterized convolutional layer. IEEE Transactions on Image Processing, 2022, 31: 3726–3736.
    [14] Han ZM, Jian MW, Wang GG. ConvUNeXt: An efficient convolution neural network for medical image segmentation. Knowledge-based Systems, 2022, 253: 109512.
    [15] Li Y, Wang Y, Leng T, et al. Wavelet U-Net for medical image segmentation. Proceedings of the 29th International Conference on Artificial Neural Networks and Machine Learning. Bratislava: Springer, 2020. 800–810.
    [16] Dikkala U, Mosiganti KJ, Alagirisamy M. Wavelet decomposition methodology for improved retinal blood vessel segmentation. Proceedings of ICSADL 2021 on Sentimental Analysis and Deep Learning. Singapore: Springer, 2022. 369–381.
    [17] Bagaria R, Wadhwani S, Wadhwani AK. A wavelet transform and neural network based segmentation & classification system for bone fracture detection. Optik, 2021, 236: 166687.
    [18] Liu CX, Pang MY. Automatic lung segmentation based on image decomposition and wavelet transform. Biomedical Signal Processing and Control, 2020, 61: 102032.
    [19] Guo CL, Szemenyei M, Yi YG, et al. SA-UNet: Spatial attention U-Net for retinal vessel segmentation. Proceedings of the 25th International Conference on Pattern Recognition (ICPR). Milan: IEEE, 2021. 1236–1242.
    [20] Bagaria R, Wadhwani S, Wadhwani AK. A wavelet-based segmentation technique for medical images. Proceedings of ICSISCET 2020 on Artificial Intelligence and Sustainable Computing. Singapore: Springer, 2022. 65–77.
    [21] Othman G, Zeebaree D Q. The applications of discrete wavelet transform in image processing: A review. Journal of Soft Computing and Data Mining, 2020, 1(2): 31–43.
    [22] Liu RH, Nan HY, Zou YY, et al. LSW-Net: A learning scattering wavelet network for brain tumor and retinal image segmentation. Electronics, 2022, 11(16): 2616.
    [23] Zhao RJ, Qian BY, Zhang XL, et al. Rethinking dice loss for medical image segmentation. Proceedings of the 2020 IEEE International Conference on Data Mining (ICDM). Sorrento: IEEE, 2020. 851–860.
    [24] Reza AM. Realization of the contrast limited adaptive histogram equalization (CLAHE) for real-time image enhancement. Journal of VLSI Signal Processing Systems for Signal, Image and Video Technology, 2004, 38(1): 35–44.
    [25] Guo CL, Szemenyei M, Hu YT, et al. Channel attention residual U-Net for retinal vessel segmentation. Proceedings of the 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Toronto: IEEE, 2021. 1185–1189.
    [26] Shi ZJ, Wang TY, Huang Z, et al. MD-Net: A multi-scale dense network for retinal vessel segmentation. Biomedical Signal Processing and Control, 2021, 70: 102977.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

吴佶蔚,宣士斌.基于残差与小波U-Net的视网膜图像分割.计算机系统应用,2024,33(6):99-107

复制
分享
文章指标
  • 点击次数:455
  • 下载次数: 986
  • HTML阅读次数: 702
  • 引用次数: 0
历史
  • 收稿日期:2023-11-13
  • 最后修改日期:2023-12-20
  • 在线发布日期: 2024-05-07
文章二维码
您是第11416837位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号