融合社交利益与图注意力网络的同伴互评分数预测
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

重庆市教育科学规划重点课题(K22YE205098); 重庆师范大学博士启动基金/人才引进项目(21XLB030, 21XLB029)


Prediction of Peer Evaluation Scores by Integrating Social Benefits and Graph Attention Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在同伴互评过程中, 评估者会因为战略性评估而导致评估分数不准确. 本文考虑了评估者之间的社交利益关系, 提出了一种融合社交利益与图注意力网络的同伴互评分数预测方法GAT-SIROAN. 该方法由表示评估者与解决方案关系的加权网络SIROAN以及用来预测同伴互评分数的图注意力网络GAT构成. 在SIROAN中使用ITSA方法定义了评估者的两个特征: 自我评分能力和同伴评分能力, 并通过比较这两个特征来获取评估者之间的社交利益因子和关系. 在分数预测环节, 为了考虑每个节点的重要性, 使用自注意力机制来计算节点的注意力系数, 以此来提高预测能力. 采用最小化其均方根误差来学习网络的参数, 从而获取更准确的同伴互评预测分数. GAT-SIROAN在真实数据集上与平均值、中位数、PeerRank、RankwithTA以及GCN-SOAN这5个基线方法进行了对比实验, 结果表明GAT-SIROAN在RMSE指标上均优于基线方法.

    Abstract:

    During peer evaluation, evaluators may give inaccurate evaluation scores as a result of strategic evaluation. Taking into account the evaluators’ social interest (SI) relations, this study proposes a prediction method named graph attention network-social interest relation-oriented attention network (GAT-SIROAN) that integrates SI and the GAT. This method consists of a weighted network SIROAN that represents the evaluators’ relations with the solutions and a GAT that is used to predict peer evaluation scores. In the SIROAN, the interrupted time-series analysis (ITSA) method is applied to define the evaluators’ two characteristics: the self-evaluation ability and the peer evaluation ability, and these two characteristics are compared to obtain the SI factors and relations among the evaluators. In the score prediction stage, considering the importance of each node, this study uses a self-attention mechanism to calculate the attention coefficients at the nodes, thereby improving the prediction ability. Network parameters are learned by minimizing the root mean square error (RMSE) to obtain more accurate predicted peer evaluation scores. The GAT-SIROAN method is compared experimentally with five baseline methods, namely, the mean, median, PeerRank, RankwithTA, and GCN-SOAN methods, on real datasets. The results show that the GAT-SIROAN method outperforms all the above baseline methods in the RMSE.

    参考文献
    相似文献
    引证文献
引用本文

杨群,訾玲玲,丛鑫.融合社交利益与图注意力网络的同伴互评分数预测.计算机系统应用,2024,33(5):218-227

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-11-07
  • 最后修改日期:2023-12-11
  • 录用日期:
  • 在线发布日期: 2024-04-01
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号