摘要:针对传统工业管道腐蚀率预测模型存在特征提取依赖人工经验和泛化能力不足的问题, 本文将卷积神经网络(convolutional neural network, CNN)和长短期记忆网络(long short-term memory, LSTM)相结合, 提出了基于布谷鸟优化算法(cuckoo search, CS)的CNN-LSTM-CS网络模型, 实现对工业管道腐蚀率预测. 首先, 对采集的管道腐蚀数据集进行归一化预处理; 然后, 利用CNN网络提取影响管道腐蚀率因素的深层次特征信息, 并通过训练LSTM网络构建CNN-LSTM预测模型; 最后, 采用CS算法对预测模型进行参数优化, 减少预测误差, 实现腐蚀率的精准预测. 实验结果表明, 对比几种典型的腐蚀率预测方法, 本文提出的方法具有更高的预测精度, 为工业管道腐蚀率检测提供新的思路.