摘要:在当前视频多模态情感分析研究中, 存在着未充分考虑模态之间的动态独立性和模态融合缺乏信息流控制的问题. 为解决这些问题, 本文提出了一种结合模态表征学习的多模态情感分析模型. 首先, 通过使用BERT和LSTM分别挖掘文本、音频和视频的内在信息, 其次, 引入模态表征学习, 以获得更具信息丰富性的单模态特征. 在模态融合阶段, 融合了门控机制, 对传统的Transformer融合机制进行改进, 以更精确地控制信息流. 在公开数据集CMU-MOSI和CMU-MOSEI的实验结果表明, 与传统模型相比, 准确性和F1分数都有所提升, 验证了模型的有效性.