辅助视障出行融合障碍物检测的路径规划研究进展
作者:
基金项目:

山东省中医药科技项目(Q-2022052); 山东省研究生教育优质课程建设项目(SDYKC19148; ADYAL18030)


Research Progress on Path Planning for Visually Impaired Travel with Integrated Obstacle Detection
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [64]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    视障人士是社会中的弱势群体, 独立出行面临重重障碍. 为视障人士提供安全可靠的辅助设备体现了社会文明的进步. 介绍了辅助视障出行有关的障碍物检测识别关键技术和路径规划相关算法. 重点对障碍物检测之后的路径规划算法进行分析, 综合对比各种技术的应用特点及场景并讨论了相关方法在视障辅助设备中的研究进展. 总结了多技术融合使用在智能辅助设备中的应用现状. 在此基础上, 结合人工智能及嵌入式设备等技术的进步展望了未来辅助视障出行设备的发展方向.

    Abstract:

    The visually impaired are a vulnerable group in society and face many obstacles when traveling independently. Providing safe and reliable auxiliary equipment for the visually impaired reflects the progress of social civilization. This study introduces the key technologies for obstacle detection and identification and path planning related algorithms for assisting visually impaired travel. The study mainly analyzes path planning algorithms after obstacle detection, comprehensively compares the application characteristics and scenarios of various technologies, and discusses the research progress of related methods in visually impaired assistive devices. In addition, it summarizes the current application status of multi-technology integration in intelligent assistance equipment. On this basis, combined with the advancement of technologies such as artificial intelligence and embedded devices, the future development direction of auxiliary visually impaired travel equipment is prospected.

    参考文献
    [1] Jivrajani K, Patel SK, Parmar C, et al. AIoT-based smart stick for visually impaired person. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 2501311.
    [2] 毛志伟, 傅悦, 崔瑶. 视障群体的信息无障碍应用现状分析. 信息记录材料, 2019, 20(7): 51–53.
    [3] 丁虹月, 杨婧. 基于视障人群特征的出行穿戴设备通感设计研究. 山东工艺美术学院学报, 2018(1): 64–68.
    [4] Akram S, Mahmood A, Ullah I, et al. Construction and analysis of a novel wearable assistive device for a visually impaired person. Applied Bionics and Biomechanics, 2020, 2020: 6153128.
    [5] 宋玉娥, 刘业辉, 张小燕, 等. 基于STM32的智能导盲杖的设计. 电子器件, 2020, 43(5): 1180–1184.
    [6] 杨礼, 崔永利, 霍毅, 等. 基于人工智能技术的多信息融合可穿戴式导盲系统设计. 科技创新与应用, 2023, 13(18): 19–22.
    [7] 彭琳钰, 刘宇红, 马治楠, 等. 基于深层卷积神经网络的智能导盲终端设计与应用. 贵州大学学报(自然科学版), 2019, 36(3): 86–90, 95.
    [8] 李子康, 徐桂芝, 郭苗苗. 视听融合导盲机器人的设计与研究. 激光与光电子学进展, 2017, 54(12): 346–356.
    [9] 黄涛. 超声波测距传感器在高速公路自动发卡机中的应用. 电子产品世界, 2021, 28(7): 39–41.
    [10] 张亦勋. 基于红外技术测距仪的设计与实现. 电子制作, 2021, 29(24): 12–14.
    [11] Patil K, Jawadwala Q, Shu FC. Design and construction of electronic aid for visually impaired people. IEEE Transactions on Human-machine Systems, 2018, 48(2): 172–182.
    [12] Meshram VV, Patil K, Meshram VA, et al. An astute assistive device for mobility and object recognition for visually impaired people. IEEE Transactions on Human-machine Systems, 2019, 49(5): 449–460.
    [13] Chang WJ, Chen LB, Chen MC, et al. Design and implementation of an intelligent assistive system for visually impaired people for aerial obstacle avoidance and fall detection. IEEE Sensors Journal, 2020, 20(17): 10199–10210.
    [14] Katzschmann RK, Araki B, Rus D. Safe local navigation for visually impaired users with a time-of-flight and haptic feedback device. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2018, 26(3): 583–593.
    [15] 韦中超, 廖浚宏, 张准, 等. 基于超声波测距和PSD红外测距的智能语音导盲器. 现代电子技术, 2013, 36(10): 115–118.
    [16] Ahmad NS, Boon NL, Goh P. Multi-sensor obstacle detection system via model-based state-feedback control in smart cane design for the visually challenged. IEEE Access, 2018, 6: 64182–64192.
    [17] Lee TJ, Yi DH, Cho DID. A monocular vision sensor-based obstacle detection algorithm for autonomous robots. Sensors, 2016, 16(3): 311.
    [18] Ou S, Park H, Lee J. Implementation of an obstacle recognition system for the blind. Applied Sciences, 2019, 10(1): 282.
    [19] 任慧娟, 金守峰, 林强强, 等. 面向视障人群的障碍物位置与距离的视觉测量方法. 轻工机械, 2020, 38(3): 65–68, 73.
    [20] 朱爱斌, 何大勇, 罗文成, 等. 基于双目视觉方法的可穿戴式导盲机器人研究. 机械设计与研究, 2016, 32(5): 31–34.
    [21] 王涛, 王学. 基于双目立体视觉的视障辅助系统设计. 电子制作, 2023, 31(5): 21–25, 47.
    [22] Jiang B, Yang JC, Lv ZH, et al. Wearable vision assistance system based on binocular sensors for visually impaired users. IEEE Internet of Things Journal, 2019, 6(2): 1375–1383.
    [23] Yang KL, Wang KW, Lin SF, et al. Long-range traversability awareness and low-lying obstacle negotiation with realsense for the visually impaired. Proceedings of the 1st International Conference on Information Science and Systems. Jeju: ACM, 2018. 137–141.
    [24] Hua MJ, Nan YB, Lian SG. Small obstacle avoidance based on RGB-D semantic segmentation. Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW). Seoul: IEEE, 2019. 886–894.
    [25] Li B, Muñoz JP, Rong XJ, et al. Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing, 2019, 18(3): 702–714.
    [26] Long NB, Wang KW, Cheng RQ, et al. Assisting the visually impaired: Multitarget warning through millimeter wave radar and RGB-depth sensors. Journal of Electronic Imaging, 2019, 28(1): 013028.
    [27] Wong YC, Lai JA, Ranjit SSS, et al. Convolutional neural network for object detection system for blind people. Journal of Telecommunication, Electronic and Computer Engineering (JTEC), 2019, 11(2): 1–6.
    [28] Yu XR, Yang GJ, Jones S, et al. AR marker aided obstacle localization system for assisting visually impaired. Proceedings of the 2018 IEEE International Conference on Electro/Information Technology (EIT). Rochester: IEEE, 2018. 271–276.
    [29] 陈朝阳, 高翔森, 孙铭悦, 等. 基于YOLOv3算法的盲道识别. 科学技术创新, 2021(7): 148–149.
    [30] 孙嘉鑫, 吴琳. 基于YOLOv3算法的盲道障碍物识别技术应用研究. 现代计算机, 2021, 27(5): 71–74.
    [31] 牛恒, 陈智利, 周泉, 等. 基于图像处理技术的盲人避障系统研究与实现. 自动化技术与应用, 2023, 42(1): 1–4, 9.
    [32] Karur K, Sharma N, Dharmatti C, et al. A survey of path planning algorithms for mobile robots. Vehicles, 2021, 3(3): 448–468.
    [33] Liu LX, Wang X, Yang X, et al. Path planning techniques for mobile robots: Review and prospect. Expert Systems with Applications, 2023, 227: 120254.
    [34] Fallah N, Apostolopoulos I, Bekris K, et al. Indoor human navigation systems: A survey. Interacting with Computers, 2013, 25(1): 21–33.
    [35] 鲁毅, 高永平, 龙江腾. A*算法在移动机器人路径规划中的研究. 湖北师范大学学报(自然科学版), 2022, 42(2): 59–65.
    [36] 林梓健, 刘凯, 林群煦. 路径规划算法的研究综述. 现代信息科技, 2023, 7(4): 75–80.
    [37] 刘志飞, 曹雷, 赖俊, 等. 多智能体路径规划综述. 计算机工程与应用, 2022, 58(20): 43–62.
    [38] Kammoun S, Dramas F, Oriolaand B, et al. Route selection algorithm for blind pedestrian. Proceedings of the 2010 International Conference on Control, Automation and Systems. Gyeonggi-do: IEEE, 2010. 2223–2228.
    [39] 曹梦凡, 李佩玲, 唐轲. 基于Dijkstra算法的盲道导航软件的设计与开发. 电脑知识与技术, 2021, 17(30): 82–85, 100.
    [40] Chen QT, Khan M, Tsangouri C, et al. CCNY smart cane. Proceedings of the 7th IEEE Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER). Honolulu: IEEE, 2017. 1246–1251.
    [41] Hosny M, Alsarrani R, Najjar A. Indoor wheelchair navigation for the visually impaired. Proceedings of the 2015 International Conference on HCI International Posters’ Extended Abstracts. Los Angeles: Springer, 2015. 411–417.
    [42] 林韩熙, 向丹, 欧阳剑, 等. 移动机器人路径规划算法的研究综述. 计算机工程与应用, 2021, 57(18): 38–48.
    [43] Moorthy AK, Bovik AC. Blind image quality assessment: From natural scene statistics to perceptual quality. IEEE Transactions on Image Processing, 2011, 20(12): 3350–3364.
    [44] Liu TY, Yan RX, Wei GR, et al. Local path planning algorithm for blind-guiding robot based on improved DWA algorithm. Proceedings of the 2019 Chinese Control and Decision Conference (CCDC). Nanchang: IEEE, 2019. 6169–6173.
    [45] Gu SY, Bao JM, Chen D, et al. GIQA: Generated image quality assessment. Proceedings of the 16th European Conference on Computer Vision. Glasgow: Springer, 2020. 369–385.
    [46] Guo YC, Hao LN, Wu YL. Research on vision based outdoor blind guiding robot. Proceedings of the 12th International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER). Baishan: IEEE, 2022. 283–288.
    [47] Yuan WB, Guo YC, Hao LN, et al. Local path planning of the outdoor blind guiding robot. Proceedings of the 11th IEEE Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER). Jiaxing: IEEE, 2021. 209–213.
    [48] Zhang YD, Zhao Y, Wei T, et al. Dynamic path planning algorithm for wearable visual navigation system based on the improved A*. Proceedings of the 2017 IEEE International Conference on Imaging Systems and Techniques (IST). Beijing: IEEE, 2017. 1–6.
    [49] Xu ZY, Yuan W. Mobile robot path planning based on fusion of improved A* algorithm and adaptive DWA algorithm. Journal of Physics: Conference Series, 2022, 2330: 012003.
    [50] 宋丽君, 周紫瑜, 李云龙, 等. 改进Q-learning的路径规划算法研究. 小型微型计算机系统. http://kns.cnki.net/kcms/detail/21.1106.tp.20230218.2208.008.html. (在线出版)(2023-08-25).
    [51] 刘晓晨, 郑孝遥, 沈晨. 结合人工势场的Q-learning无人驾驶汽车路径规划算法. 电子质量, 2022(12): 1–5.
    [52] López-Lozada E, Rubio-Espino E, Sossa-Azuela JH, et al. Reactive navigation under a fuzzy rules-based scheme and reinforcement learning for mobile robots. PeerJ Computer Science, 2021, 7: e556.
    [53] Xie LH, Wang S, Markham A, et al. Towards monocular vision based obstacle avoidance through deep reinforcement learning. arXiv:1706.09829, 2017.
    [54] Chewu CCE, Kumar VM. Autonomous navigation of a mobile robot in dynamic indoor environments using SLAM and reinforcement learning. IOP Conference Series: Materials Science and Engineering, 2018, 402: 012022.
    [55] Wang CL, Yang X, Li H. Improved Q-Learning applied to dynamic obstacle avoidance and path planning. IEEE Access, 2022, 10: 92879–92888.
    [56] 许宏鑫, 吴志周, 梁韵逸. 基于强化学习的自动驾驶汽车路径规划方法研究综述. 计算机应用研究, 2023, 40(11): 3211–3217.
    [57] Mnih V, Kavukcuoglu K, Silver D, et al. Playing Atari with deep reinforcement learning. arXiv:1312.5602, 2013.
    [58] 封硕, 舒红, 谢步庆. 基于改进深度强化学习的三维环境路径规划. 计算机应用与软件, 2021, 38(1): 250–255.
    [59] Xiang JQ, Li QD, Dong XW, et al. Continuous control with deep reinforcement learning for mobile robot navigation. Proceedings of the 2019 Chinese Automation Congress (CAC). Hangzhou: IEEE, 2019. 1501–1506.
    [60] Lu CL, Liu ZY, Huang JT, et al. Assistive navigation using deep reinforcement learning guiding robot with UWB/voice beacons and semantic feedbacks for blind and visually impaired people. Frontiers in Robotics and AI, 2021, 8: 654132.
    [61] Feng SM, Ren HL, Wang XR, et al. Mobile robot obstacle avoidance based on deep reinforcement learning. Proceedings of the 2019 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Anaheim: American Society of Mechanical Engineers, 2019. V05AT07A048.
    [62] Li HR, Zhang QC, Zhao DB. Deep reinforcement learning-based automatic exploration for navigation in unknown environment. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31(6): 2064–2076.
    [63] Wang W, Wu ZK, Luo HF, et al. Path planning method of mobile robot using improved deep reinforcement learning. Journal of Electrical and Computer Engineering, 2022, 2022: 5433988.
    [64] Choi J, Lee G, Lee C. Reinforcement learning-based dynamic obstacle avoidance and integration of path planning. Intelligent Service Robotics, 2021, 14(5): 663–677.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

冯今瑀,张魁星,张铁林,李延军.辅助视障出行融合障碍物检测的路径规划研究进展.计算机系统应用,2024,33(4):50-59

复制
分享
文章指标
  • 点击次数:684
  • 下载次数: 5332
  • HTML阅读次数: 2475
  • 引用次数: 0
历史
  • 收稿日期:2023-09-18
  • 最后修改日期:2023-10-25
  • 在线发布日期: 2024-03-01
文章二维码
您是第11482586位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号