基于注意力机制的自监督图卷积会话推荐
作者:
基金项目:

国家自然科学基金(52174184)


Self-supervised Graph Convolution Session Recommendation Based on Attention Mechanism
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [42]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为了解决会话推荐系统中数据稀疏性问题, 提出了一种基于注意力机制的自监督图卷积会话推荐模型(self-supervised graph convolution session recommendation based on attention mechanism, ATSGCN). 该模型将会话序列构建成3个不同的视图: 超图视图、项目视图和会话视图, 显示会话的高阶和低阶连接关系; 其次, 超图视图使用超图卷积网络来捕获会话中项目之间的高阶成对关系, 项目视图和会话视图分别使用图卷积网络和注意力机制来捕获项目和会话级别局部数据中的低阶连接信息; 最后, 通过自监督学习使两个编码器学习到的会话表示之间的互信息最大化, 从而有效提升推荐性能. 在Nowplaying和Diginetica两个公开数据集上进行对比实验, 实验结果表明, 所提模型性能优于基线模型.

    Abstract:

    To address the challenge of data sparsity within session recommendation systems, this study introduces a self-supervised graph convolution session recommendation model based on the attention mechanism (ATSGCN). The model constructs the session sequence into three distinct views: the hypergraph view, item view, and session view, showing the high-order and low-order connection relationships of the session. Secondly, the hypergraph view employs hypergraph convolutional networks to capture higher-order pairwise relationships among items within a conversation. The item view and session view employ graph convolutional networks and attention mechanisms respectively to capture lower-order connection details within local conversation data at both item and session levels. Finally, self-supervised learning is adopted to maximize the mutual information between the session representations learned by the two encoders, thereby effectively improving recommendation performance. Comparative experiment on the Nowplaying and Diginetica public datasets demonstrates the superior performance of the proposed model over the baseline model.

    参考文献
    [1] 倪美玉, 曹为刚. 基于深度神经网络的个性化混合商品推荐模型. 计算机系统应用, 2021, 30(5): 184–189.
    [2] 张栩翔, 汤玉祺, 赵文, 等. 基于知识图谱和图嵌入的个性化学习资源推荐. 计算机系统应用, 2023, 32(5): 180–187.
    [3] 刘君良, 李晓光. 个性化推荐系统技术进展. 计算机科学, 2020, 47(7): 47–55.
    [4] Jannach D, Ludewig M. When recurrent neural networks meet the neighborhood for session-based recommendation. Proceedings of the 11th ACM Conference on Recommender Systems. Como: ACM Press, 2017. 306–310.
    [5] Chen H, Qian FL, Chen J, et al. Attribute-based neural collaborative filtering. Expert Systems with Applications, 2021, 185: 115539.
    [6] 刘锦涛, 谢颖华. 基于图注意力网络表示学习的协同过滤推荐算法. 计算机系统应用, 2022, 31(4): 273–280.
    [7] Hidasi B, Karatzoglou A, Baltrunas L, et al. Session-based recommendations with recurrent neural networks. Proceedings of the 4th International Conference on Learning Representations. San Juan: ICLR Press, 2016. 1–10.
    [8] Hidasi B, Quadrana M, Karatzoglou A, et al. Parallel recurrent neural network architectures for feature-rich session-based recommendations. Proceedings of the 10th ACM Conference on Recommender Systems. Boston: ACM, 2016. 241–248.
    [9] Feng CQ, Shi CY, Liu CM, et al. Context-aware item attraction model for session-based recommendation. Expert Systems with Applications, 2021, 176: 114834.
    [10] Liu X, Zhang FJ, Hou ZY, et al. Self-supervised learning: Generative or contrastive. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(1): 857–876.
    [11] Rendle S, Freudenthaler C, Schmidt-Thieme L. Factorizing personalized Markov chains for next-basket recommendation. Proceedings of the 19th International Conference on World Wide Web. Raleigh: ACM Press, 2010. 811–820.
    [12] Le DT, Fang Y, Lauw HW. Modeling sequential preferences with dynamic user and context factors. Proceedings of the 2016 European Conference on Machine Learning and Knowledge Discovery in Databases. Riva del Garda: Springer International Publishing, 2016. 145–161.
    [13] Yang YD, Xiao P, Yao X, et al. PHR: A personalized hidden route recommendation system based on hidden Markov model. Proceedings of the 4th International Joint Conference on Web and Big Data. Tianjin: Springer International Publishing, 2020. 535–539.
    [14] Chen J, Wang CK, Wang JM. A personalized interest-forgetting Markov model for recommendations. Proceedings of the 29th AAAI Conference on Artificial Intelligence. Austin: AAAI Press, 2015. 16–22.
    [15] Wu X, Liu Q, Chen EH, et al. Personalized next-song recommendation in online Karaokes. Proceedings of the 7th ACM Conference on Recommender Systems. Hong Kong: ACM Press, 2013. 137–140.
    [16] Hidasi B, Karatzoglou A. Recurrent neural networks with top-k gains for session-based recommendations. Proceedings of the 27th ACM International Conference on Information and Knowledge Management. Torino: ACM, 2018. 843–852.
    [17] Li J, Ren PJ, Chen ZM, et al. Neural attentive session-based recommendation. Proceedings of the 2017 ACM on Conference on Information and Knowledge Management. Singapore: ACM Press, 2017. 1419–1428.
    [18] Liu Q, Zeng YF, Mokhosi R, et al. STAMP: Short-term attention/memory priority model for session-based recommendation. Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. London: ACM, 2018. 1831–1839.
    [19] Kang WC, McAuley J. Self-attentive sequential recommendation. Proceedings of the 2018 IEEE International Conference on Data Mining (ICDM). Singapore: IEEE, 2018. 197–206.
    [20] Wang MR, Ren PJ, Mei L, Chen ZM, et al. A collaborative session-based recommendation approach with parallel memory modules. Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval. Paris: ACM, 2019. 345–354.
    [21] Zhang ZZ, Wang B. Graph spring network and informative anchor selection for session-based recommendation. Neural Networks, 2023, 159: 43–56.
    [22] 孟志鹏, 成卫青. 基于自注意力网络的时间感知序列化推荐. 计算机系统应用, 2023, 32(1): 197–205.
    [23] Chu F, Jia CY. Self-supervised global context graph neural network for session-based recommendation. PeerJ Computer Science, 2022, 8: e1055.
    [24] Wu S, Tang YY, Zhu YQ, et al. Session-based recommendation with graph neural networks. Proceedings of the 33rd AAAI Conference on Artificial Intelligence. Honolulu: AAAI Press, 2019. 346–353.
    [25] Yu F, Zhu YQ, Liu Q, et al. TAGNN: Target attentive graph neural networks for session-based recommendation. Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM Press, 2020. 1921–1924.
    [26] Xu CF, Zhao PP, Liu YC, et al. Graph contextualized self-attention network for session-based recommendation. Proceedings of the 28th International Joint Conference on Artificial Intelligence. Macao: IJCAI.org, 2019. 3940–3946.
    [27] Chen TW, Wong RCW. Handling information loss of graph neural networks for session-based recommendation. Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York: ACM, 2020. 1172–1180.
    [28] Qiu RH, Li JJ, Huang Z, et al. Rethinking the item order in session-based recommendation with graph neural networks. Proceedings of the 28th ACM International Conference on Information and Knowledge Management. Beijing: ACM, 2019. 579–588.
    [29] Wang ZY, Wei W, Cong G, et al. Global context enhanced graph neural networks for session-based recommendation. Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM Press, 2020. 169–178.
    [30] Pan ZQ, Cai F, Chen WY, et al. Star graph neural networks for session-based recommendation. Proceedings of the 29th ACM International Conference on Information & Knowledge Management. New York: ACM, 2020. 1195–1204.
    [31] Yi ZJ, Song R, Li J, et al. Neighbor-enhanced graph transition network for session-based recommendation. International Journal of Machine Learning and Cybernetics, 2023, 14(4): 1317–1331.
    [32] Guo JY, Yang YM, Song XC, et al. Learning multi-granularity consecutive user intent unit for session-based recommendation. Proceedings of the 15th ACM International Conference on Web Search and Data Mining. New York: ACM Press, 2022. 343–352.
    [33] Xie YQ, Li ZR, Qin T, et al. Personalized session-based recommendation using graph attention networks. Proceedings of the 2021 International Joint Conference on Neural Networks (IJCNN). Shenzhen: IEEE, 2021. 1–8.
    [34] Xia X, Yin HZ, Yu JL, et al. Self-supervised graph co-training for session-based recommendation. Proceedings of the 30th ACM International Conference on Information & Knowledge Management. ACM, 2021. 2180–2190.
    [35] Xia X, Yin HZ, Yu JL, et al. Self-supervised hypergraph convolutional networks for session-based recommendation. Proceedings of the 35th AAAI Conference on Artificial Intelligence. Vancouver: AAAI Press, 2021. 4503–4511.
    [36] Feng YF, You HX, Zhang ZZ, et al. Hypergraph neural networks. Proceedings of the 33rd AAAI Conference on Artificial Intelligence. Honolulu: AAAI Press, 2019, 33 (1): 3558–3565.
    [37] Zhou K, Wang H, Zhao WX, et al. S3-Rec: Self-supervised learning for sequential recommendation with mutual information maximization. Proceedings of the 29th ACM International Conference on Information & Knowledge Management. New York: ACM, 2020. 1893–1902.
    [38] 王永贵, 赵晓暄. 结合自监督学习的图神经网络会话推荐. 计算机工程与应用, 2023, 59(3): 244–252.
    [39] Gan MX, Zhang XT. Integrating community interest and neighbor semantic for microblog recommendation. International Journal of Web Services Research, 2021, 18(2): 54–75.
    [40] van den Oord A, Li YZ, Vinyals O. Representation learning with contrastive predictive coding. arXiv:1807.03748, 2018.
    [41] Zangerle E, Pichl M, Gassler W, et al. #Nowplaying music dataset: Extracting listening behavior from Twitter. Proceedings of the 1st International Workshop on Internet-scale Multimedia Management. Association for Computing Machinery. Orlando: ACM, 2014. 21–26.
    [42] Ren PJ, Chen ZM, Li J, et al. RepeatNet: A repeat aware neural recommendation machine for session-based recommendation. Proceedings of the 33rd AAAI Conference on Artificial Intelligence. Honolulu: AAAI Press, 2019. 4806–4813.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

吴永庆,朱月,王钰涵.基于注意力机制的自监督图卷积会话推荐.计算机系统应用,2024,33(5):57-66

复制
分享
文章指标
  • 点击次数:559
  • 下载次数: 1282
  • HTML阅读次数: 749
  • 引用次数: 0
历史
  • 收稿日期:2023-11-05
  • 最后修改日期:2023-12-04
  • 在线发布日期: 2024-03-22
文章二维码
您是第11415558位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号