改进鲸鱼优化算法的车联网计算卸载
作者:

Computating Offloading Based on Improved Whale Optimization Algorithm in IoV
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [23]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    在边缘服务器资源受限的情况下, 如何设计合理的资源管理和任务调度方案是一项重要的研究内容. 为提升系统服务效用, 提出一种联合资源分配和计算卸载的设计方案. 首先, 借助二分搜索法和拉格朗日乘子法得到通信和计算资源的最佳匹配. 然后, 基于融合多种策略的鲸鱼优化算法来求解卸载决策, 其中包括调整收敛因子为指数幂级的非线性变化策略, 平衡探索和利用阶段的自适应权重策略, 三角形和Levy飞行的游走策略, 同时在适应度评价中引入罚函数来达到用户接入数量的约束限制, 最后利用V型传递函数制定二进制卸载策略. 仿真结果表明, 在与其他基准方案的多项指标评估中, 所提方案能有效增加网络吞吐量, 显著提高系统效用.

    Abstract:

    As the resources of edge servers are limited, how to design a reasonable resource management and task scheduling scheme is important research. To improve the utility of system services, this study proposes the strategy of joint resource allocation and computing offloading. Firstly, the optimal matching of communication and computing resources is obtained by binary search and the Lagrange multiplier method. Then, the offloading decision is made based on the whale optimization algorithm integrating with multiple strategies, including adjusting the convergence factor with a nonlinear change strategy of the exponential power, the adaptive weight strategy balancing the exploration and utilization stage, and the wandering strategy of the triangle and Levy flight. Besides, the study introduces a penalty function in fitness evaluation to satisfy the constraint of user access. Finally, it formulates a V-shaped transfer function to make binary offloading decisions. The simulation results show that in various indicator evaluations with other benchmark schemes, the proposed strategy can effectively increase network throughput and significantly improve system utility.

    参考文献
    [1] Akbar A, Ibrar M, Jan MA, et al. SeAC: SDN-enabled adaptive clustering technique for social-aware Internet of vehicles. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(5): 4827–4835.
    [2] Tian LL, Li M, Si PB, et al. A multi-hop transmission and blockchain-assisted task offloading framework for MEC-enabled smart rail system. Proceedings of the 8th IEEE International Conference on Computer and Communications (ICCC). Chengdu: IEEE, 2022. 1301–1307.
    [3] Balasubramanian V, Otoum S, Reisslein M. VeNet: Hybrid stacked autoencoder learning for cooperative edge intelligence in IoV. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(9): 16643–16653.
    [4] Liu J, Zhang L, Li CL, et al. Blockchain-based secure communication of intelligent transportation digital twins system. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(11): 22630–22640.
    [5] Guo H, Makki B, Alouini MS, et al. High-rate uninterrupted internet of vehicle communications in highways: Dynamic blockage avoidance and CSIT acquisition. IEEE Communications Magazine, 2022, 60(7): 44–50.
    [6] Wei W, Shen J, Telikani A, et al. Feasibility analysis of data transmission in partially damaged IoT networks of vehicles. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(4): 4577–4588.
    [7] Sehla K, Nguyen TMT, Pujolle G, et al. Resource allocation modes in C-V2X: From LTE-V2X to 5G-V2X. IEEE Internet of Things Journal, 2022, 9(11): 8291–8314.
    [8] Wang D, Song B, Lin P, et al. Resource management for edge intelligence (EI)-assisted IoV using quantum-inspired reinforcement learning. IEEE Internet of Things Journal, 2022, 9(14): 12588–12600.
    [9] Cui YY, Li HH, Zhang DG, et al. Multiagent reinforcement learning-based cooperative multitype task offloading strategy for internet of vehicles in B5G/6G network. IEEE Internet of Things Journal, 2023, 10(14): 12248–12260.
    [10] Zhang HJ, Jiang MH, Liu XN, et al. PPO-based PDACB traffic control scheme for massive IoV communications. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(1): 1116–1125.
    [11] Fan WH, Su Y, Liu J, et al. Joint task offloading and resource allocation for vehicular edge computing based on V2I and V2V modes. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(4): 4277–4292.
    [12] Raza S, Wang SG, Ahmed M, et al. Task offloading and resource allocation for IoV using 5G NR-V2X communication. IEEE Internet of Things Journal, 2022, 9(13): 10397–10410.
    [13] Song SD, Ma SY, Yang LY, et al. Delay-sensitive tasks offloading in multi-access edge computing. Expert Systems with Applications, 2022, 198: 116730.
    [14] Alam MZ, Jamalipour A. Multi-agent DRL-based Hungarian algorithm (MADRLHA) for task offloading in multi-access edge computing internet of vehicles (IoVs). IEEE Transactions on Wireless Communications, 2022, 21(9): 7641–7652.
    [15] Zhang Z, Zeng F. Efficient task allocation for computation offloading in vehicular edge computing. IEEE Internet of Things Journal, 2023, 10(6): 5595–5606.
    [16] Xu XL, Jiang QT, Zhang PM, et al. Game theory for distributed IoV task offloading with fuzzy neural network in edge computing. IEEE Transactions on Fuzzy Systems, 2022, 30(11): 4593–4604.
    [17] Liu YP, Zhang HJ, Zhou H, et al. User association, subchannel and power allocation in space-air-ground integrated vehicular network with delay constraints. IEEE Transactions on Network Science and Engineering, 2023, 10(3): 1203–1213.
    [18] Zhang HX, Yang YJ, Shang BD, et al. Joint resource allocation and multi-part collaborative task offloading in MEC systems. IEEE Transactions on Vehicular Technology, 2022, 71(8): 8877–8890.
    [19] 郑会吉, 余思聪, 崔翛龙, 等. 边缘计算中的计算卸载综述. 计算机系统应用, 2021, 30(12): 28–36.
    [20] Mirjalili S, Lewis A. The whale optimization algorithm. Advances in Engineering Software, 2016, 95: 51–67.
    [21] Pham QV, Mirjalili S, Kumar N, et al. Whale optimization algorithm with applications to resource allocation in wireless networks. IEEE Transactions on Vehicular Technology, 2020, 69(4): 4285–4297.
    [22] Mirjalili S, Lewis A. S-shaped versus V-shaped transfer functions for binary Particle Swarm Optimization. Swarm and Evolutionary Computation, 2013, 9: 1–14.
    [23] 郭振洲, 王平, 马云峰, 等. 基于自适应权重和柯西变异的鲸鱼优化算法. 微电子学与计算机, 2017, 34(9): 20–25.
    引证文献
引用本文

赵振博,任雪容,付青坤.改进鲸鱼优化算法的车联网计算卸载.计算机系统应用,2024,33(4):123-132

复制
分享
文章指标
  • 点击次数:518
  • 下载次数: 1221
  • HTML阅读次数: 1091
  • 引用次数: 0
历史
  • 收稿日期:2023-09-24
  • 最后修改日期:2023-10-25
  • 在线发布日期: 2024-03-01
文章二维码
您是第12460735位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号