应用于供应链的区块链PBFT共识算法优化
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

云南省教育厅科学研究基金(2023J0697); 西南林业大学森林生态大数据国家林业和草原局重点实验室开放课题(2022-BDG-03); 中央引导地方科技发展专项(202307AB110009)


Optimization of Blockchain PBFT Consensus Algorithm for Supply Chain
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目前, 区块链在供应链领域中的应用越来越受到业界的广泛关注. 但由于供应链中存在大量复杂性的事务, 这给可信的主节点选取工作带来了挑战. 因此, 在机器学习分类算法与PBFT (practical Byzantine fault tolerance)共识算法的基础上, 提出一种应用于供应链的区块链PBFT共识算法优化方法. 对构建供应链与区块链的集成框架进行分析, 根据供应链中参与共识的节点属性特征, 运用K-近邻(K-nearest neighbors)来优化PBFT共识算法的主节点选取规则. 实验结果表明, 对共识节点进行信任评估分类可以较好地解决因视图切换所引发的效率问题, 从而提升区块链的吞吐量、时延、容错性等共识性能, 具有一定的实用性, 也给区块链在其他行业的应用提供了思路.

    Abstract:

    Currently, the application of blockchain in the supply chain is receiving increasing attention from the industry.However, due to the presence of a large number of complex transactions in the supply chain, selecting trustworthy primary nodes poses a challenge. Therefore, based on the machine learning classification algorithms and PBFT (practical Byzantine fault tolerance), this study proposes a blockchain PBFT optimization method applied to the supply chain. The integrated framework for the supply chain and blockchain is analyzed, and K-nearest neighbors (K-NN) is applied to optimize the primary node selection rules of the PBFT consensus algorithm based on the features of participating nodes in the supply chain consensus. Experimental results show that trust evaluation classification of consensus nodes can effectively address efficiency issues caused by view switching, thereby improving the consensus performance of blockchain in terms of throughput, latency, fault tolerance, and other aspects. The proposed method is practical and provides ideas for the application of blockchain in other industries.

    参考文献
    相似文献
    引证文献
引用本文

黄宇翔.应用于供应链的区块链PBFT共识算法优化.计算机系统应用,2024,33(4):209-214

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-09-11
  • 最后修改日期:2023-10-20
  • 录用日期:
  • 在线发布日期: 2024-03-01
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号