高阶深度可分离无人机图像小目标检测算法
作者:
基金项目:

国家自然科学基金(62173171)


Small Target Detection Algorithm for High-order Depth Separable UAV Images
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [24]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    当前无人机图像中存在小目标数量众多、背景复杂的特点, 目标检测中易造成漏检误检率较高的问题, 针对这些问题, 提出一种高阶深度可分离无人机图像小目标检测算法. 首先, 结合CSPNet结构与ConvMixer网络, 深度可分离卷积核, 获取梯度结合信息, 并引入递归门控卷积C3模块, 提升模型的高阶空间交互能力, 增强网络对小目标的敏感度; 其次, 检测头采用两个头部进行解耦, 分别输出特征图分类和位置信息, 加快模型收敛速度; 最后, 使用边框损失函数EIoU, 提高检测框精准度. 在VisDrone2019数据集上的实验结果表明, 该模型检测精度达到了35.1%, 模型漏检率和误检率有明显下降, 能够有效地应用于无人机图像小目标检测任务. 在DOTA 1.0数据集和HRSID数据集上进行模型泛化能力测试, 实验结果表明, 该模型具有良好的鲁棒性.

    Abstract:

    At present, there are many small targets in UAV images and the background is complex, which makes it easy to cause a high error detection rate in target detection. To solve these problems, this study proposes a small target detection algorithm for high-order depth separable UAV images. Firstly, by combining the CSPNet structure and ConvMixer network, the study utilizes the deeply separable convolution kernel to obtain the gradient binding information and introduces a recursively gated convolution C3 module to improve the higher-order spatial interaction ability of the model and enhance the sensitivity of the network to small targets. Secondly, the detection head adopts two heads to decouple and respectively outputs the feature map classification and position information, accelerating the model convergence speed. Finally, the border loss function EIoU is leveraged to improve the accuracy of the detection frame. The experimental results on the VisDrone2019 data set show that the detection accuracy of the model reaches 35.1%, and the missing and false detection rates of the model are significantly reduced, which can be effectively applied to the small target detection task of UAV images. The model generalization ability is tested on the DOTA 1.0 dataset and the HRSID dataset, and the experimental results show that the model has good robustness.

    参考文献
    [1] 朱华勇, 牛轶峰, 沈林成, 等. 无人机系统自主控制技术研究现状与发展趋势. 国防科技大学学报, 2010, 32(3): 115–120.
    [2] 徐光达, 毛国君. 多层级特征融合的无人机航拍图像目标检测. 计算机科学与探索, 2023, 17(3): 635–645.
    [3] 向昌成, 黄成兵, 罗平, 等. 基于YOLO算法的无人机航拍图像车辆目标检测系统研究. 计算机与数字工程, 2021, 49(8): 1566–1570.
    [4] 冒国韬, 邓天民, 于楠晶. 基于多尺度分割注意力的无人机航拍图像目标检测算法. 航空学报, 2023, 44(5): 326738.
    [5] Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation. Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus: IEEE, 2014. 580–587.
    [6] Girshick R. Fast R-CNN. Proceedings of the 2015 IEEE International Conference on Computer Vision. Santiago: IEEE, 2015. 1440–1448.
    [7] Ren SQ, He KM, Girshick R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks. Proceedings of the 28th International Conference on Neural Information Processing Systems. Montreal: MIT Press, 2015. 91–99.
    [8] Wang JL, Luo JX, Liu B, et al. Automated diabetic retinopathy grading and lesion detection based on the modified R-FCN object-detection algorithm. IET Computer Vision, 2020, 14(1): 1–8.
    [9] Liu W, Anguelov D, Erhan D, et al. SSD: Single shot multibox detector. Proceedings of the 14th European Conference on Computer Vision. Amsterdam: Springer, 2016. 21–37.
    [10] Redmon J, Divvala S, Girshick R, et al. You only look once: Unified, real-time object detection. Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016. 779–788.
    [11] Redmon J, Farhadi A. YOLO9000: Better, faster, stronger. Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017. 6517–6525.
    [12] Redmon J, Farhadi A. YOLOv3: An incremental improvement. arXiv:1804.02767, 2018.
    [13] Bochkovskiy A, Wang CY, Lia OHM. YOLOv4: Optimal speed and accuracy of object detection. arXiv:2004.10934, 2020.
    [14] Lin TY, Goyal P, Girshick R, et al. Focal loss for dense object detection. Proceedings of the 2017 IEEE International Conference on Computer Vision. Venice: IEEE, 2017. 2999–3007.
    [15] 程江川, 王伟, 康林, 等. 基于改进YOLOv5与嵌入式平台的多旋翼无人机检测算法. 兵工自动化, 2023, 42(4): 74–78.
    [16] 李利霞, 王鑫, 王军, 等. 基于特征融合与注意力机制的无人机图像小目标检测算法. 图学学报, 2023, 44(4): 658–666.
    [17] 韩俊, 袁小平, 王准, 等. 基于YOLOv5s的无人机密集小目标检测算法. 浙江大学学报(工学版), 2023, 57(6): 1224–1233
    [18] 李杨, 武连全, 杨海涛, 等. 一种无人机视角下的小目标检测算法. 红外技术, 2023, 45(9): 925–931.
    [19] 奉志强, 谢志军, 包正伟, 等. 基于改进YOLOv5的无人机实时密集小目标检测算法. 航空学报, 2023, 44(7): 327106.
    [20] Ng D, Chen YQ, Tian B, et al. Convmixer: Feature interactive convolution with curriculum learning for small footprint and noisy far-field keyword spotting. Proceedings of the 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Singapore: IEEE, 2022. 3603–3607.
    [21] Rao YM, Zhao WL, Tang YS, et al. Hornet: Efficient high-order spatial interactions with recursive gated convolutions. Proceedings of the 36th Conference on Neural Information Processing Systems. New Orleans: OpenReview.net, 2022. 10353–10366.
    [22] Zhang YF, Ren WQ, Zhang Z, et al. Focal and efficient IoU loss for accurate bounding box regression. Neurocomputing, 2022, 506: 146–157.
    [23] Wang CY, Liao HYM, Wu YH, et al. CSPNet: A new backbone that can enhance learning capability of CNN. Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Seattle: IEEE, 2020. 1571–1580.
    [24] Ge Z, Liu ST, Wang F, et al. YOLOX: Exceeding YOLO series in 2021. arXiv:2107.08430, 2021.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

郭伟,王珠颖,金海波.高阶深度可分离无人机图像小目标检测算法.计算机系统应用,2024,33(5):144-153

复制
分享
文章指标
  • 点击次数:432
  • 下载次数: 1472
  • HTML阅读次数: 928
  • 引用次数: 0
历史
  • 收稿日期:2023-11-01
  • 最后修改日期:2023-12-04
  • 在线发布日期: 2024-01-30
文章二维码
您是第11418034位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号