摘要:步态识别是根据人体的行走方式进行身份识别. 目前, 大多数步态识别方法通过浅层神经网络进行特征提取, 在室内步态数据集表现良好, 然而在近年新公布的室外步态数据集中性能表现不佳. 为了解决室外步态数据集带来的严峻挑战, 提出了一种基于视频残差神经网络的深度步态识别模型. 在特征提取阶段, 基于提出的视频残差块构建深层3D卷积神经网络(3D CNN), 提取整个步态序列的时空动力学特征; 然后, 引入时序池化和水平金字塔映射降低采样特征分辨率并提取局部步态特征; 使用联合损失函数驱动训练过程, 最后通过BNNeck平衡损失函数并调整特征空间. 实验分别在公开的室内 (CASIA-B)、室外(GREW、Gait3D)这3个步态数据集上进行. 实验结果表明, 该模型在室外步态数据集中的准确率以及收敛速度优于其他模型.