卷积神经网络在肝癌病理图像诊断中的应用综述
作者:
基金项目:

国家自然科学基金面上项目(82174528); 山东省研究生教育优质课程和教学资源库建设项目(SDYKC20047, SDYAL2022041); 教育部产学合作协同育人项目(220606121142949)


Application Review of Convolutional Neural Networks in Pathological Images Diagnosis of Liver Cancer
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [65]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    肝癌是一种恶性肝肿瘤, 起源于肝细胞. 肝癌诊断一直是医学难点问题, 也是各领域研究的热点问题, 早期确诊肝癌可以降低肝癌的死亡率. 组织病理学图像检查是肿瘤学诊断的黄金标准, 图像会显示组织切片的细胞和组织结构, 可以用于确定细胞类型、组织结构、异常细胞的数量和形态, 并评估肿瘤具体情况. 本文重点研究了卷积神经网络针对病理图像的肝癌诊断算法, 包括肝肿瘤检测、图像分割以及术前预测这3个方面的应用, 详细阐述了卷积神经网络各算法的设计思路和相关改进目的及方法, 以便为研究人员提供更清晰的参考思路. 总结性分析了卷积神经网络算法在诊断中的优缺点, 并对未来可能的研究热点和相关难点进行了探讨.

    Abstract:

    Liver cancer is a malignant liver tumor that originates from liver cells, and its diagnosis has always been a difficult medical problem and a research hotspot in various fields. Early diagnosis of liver cancer can reduce the mortality rate of liver cancer. Histopathological image examination is the gold standard for oncology diagnosis as the images can display the cells and tissue structures of tissue slices, which can be employed to determine cell types, tissue structures, and the number and morphology of abnormal cells, and evaluate the specific condition of the tumor. This study focuses on the application of convolutional neural networks in liver cancer diagnosis algorithms for pathological images, including liver tumor detection, image segmentation, and preoperative prediction. The design ideas and related improvement goals and methods of each algorithm of convolutional neural networks are elaborated in detail to provide clearer reference ideas for researchers. Additionally, the advantages and disadvantages of convolutional neural network algorithms in diagnosis are summarized and analyzed, with potential research hotspots and related difficulties in the future discussed.

    参考文献
    [1] Llovet JM, Pinyol R, Kelley RK, et al. Molecular pathogenesis and systemic therapies for hepatocellular carcinoma. Nature Cancer, 2022, 3(4): 386–401.
    [2] Chen WQ, Zheng RS, Baade PD, et al. Cancer statistics in China, 2015. CA: A Cancer Journal for Clinicians, 2016, 66(2): 115–132.
    [3] van der Laak J, Litjens G, Ciompi F. Deep learning in histopathology: The path to the clinic. Nature Medicine, 2021, 27(5): 775–784.
    [4] LeCun Y, Bengio Y, Hinton G. Deep learning. Nature, 2015, 521(7553): 436–444.
    [5] Lee SH, Chan CS, Mayo SJ, et al. How deep learning extracts and learns leaf features for plant classification. Pattern Recognition, 2017, 71: 1–13.
    [6] LeCun Y, Boser B, Denker J, et al. Handwritten digit recognition with a back-propagation network. Advances in Neural Information Processing Systems, 1989, 2.
    [7] Azer SA. Deep learning with convolutional neural networks for identification of liver masses and hepatocellular carcinoma: A systematic review. World Journal of Gastrointestinal Oncology, 2019, 11(12): 1218–1230.
    [8] 江宇, 柳宗翰, 程树群. 人工智能在肝癌领域应用研究进展. 中国实用外科杂志, 2022, 42(12): 1428–1431.
    [9] 陈钇地, 蒋涵羽, 陈婕, 等. 肝癌影像学机遇与挑战——中国十年来发展成果及展望. 磁共振成像, 2022, 13(10): 71–78.
    [10] Feng B, Ma XH, Wang S, et al. Application of artificial intelligence in preoperative imaging of hepatocellular carcinoma: Current status and future perspectives. World Journal of Gastroenterology, 2021, 27(32): 5341–5350.
    [11] 刘文广, 谢斯敏, 周雅芳, 等. 机器学习及其在肝脏疾病影像诊断中的研究进展. 国际医学放射学杂志, 2019, 42(1): 16–21.
    [12] Gul S, Khan MS, Bibi A, et al. Deep learning techniques for liver and liver tumor segmentation: A review. Computers in Biology and Medicine, 2022, 147: 105620.
    [13] Schneider L, Laiouar-Pedari S, Kuntz S, et al. Integration of deep learning-based image analysis and genomic data in cancer pathology: A systematic review. European Journal of Cancer, 2022, 160: 80–91.
    [14] Kim YJ, Jang H, Lee K, et al. PAIP 2019: Liver cancer segmentation challenge. Medical Image Analysis, 2021, 67: 101854.
    [15] Tomczak K, Czerwińska P, Wiznerowicz M. The Cancer Genome Atlas (TCGA): An immeasurable source of knowledge. Contemporary Oncology/Współczesna Onkologia, 2015, 19(1A): A68–A77.
    [16] Singh M, Singh S, Gupta S. An information fusion based method for liver classification using texture analysis of ultrasound images. Information Fusion, 2014, 19: 91–96.
    [17] Das A, Das P, Panda SS, et al. Detection of liver cancer using modified fuzzy clustering and decision tree classifier in CT images. Pattern Recognition and Image Analysis, 2019, 29(2): 201–211.
    [18] Qiu W, Xiao F, Yang X, et al. Research on fuzzy enhancement in the diagnosis of liver tumor from b-mode ultrasound images. International Journal of Image, Graphics and Signal Processing, 2011, 3(3): 10–16.
    [19] Vapnik VN. The Nature of Statistical Learning Theory. 2nd ed., New York: Springer, 1999.
    [20] Tanwar N, Rahman KF. Machine learning in liver disease diagnosis: Current progress and future opportunities. IOP Conference Series: Materials Science and Engineering, 2021, 1022: 012029.
    [21] 宋杰, 肖亮, 练智超, 等. 基于深度学习的数字病理图像分割综述与展望. 软件学报, 2021, 32(5): 1427–1460.
    [22] Saba T. Recent advancement in cancer detection using machine learning: Systematic survey of decades, comparisons and challenges. Journal of Infection and Public Health, 2020, 13(9): 1274–1289.
    [23] 宋国利, 陈杰. 病理图像分析的深度学习方法研究综述. 中国科学基金, 2022, 36(2): 225–234.
    [24] Huang WC, Chung PC, Tsai HW, et al. Automatic HCC detection using convolutional network with multi-magnification input images. Proceedings of the 2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS). Hsinchu: IEEE, 2019. 194–198.
    [25] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. Proceedings of the 3rd International Conference on Learning Representations. San Diego: ICLR, 2015.
    [26] Yang TL, Tsai HW, Huang WC, et al. Pathologic liver tumor detection using feature aligned multi-scale convolutional network. Artificial Intelligence in Medicine, 2022, 125: 102244.
    [27] Diao SH, Luo WR, Hou JX, et al. Computer aided cancer regions detection of hepatocellular carcinoma in whole-slide pathological images based on deep learning. Proceedings of the 2019 International Conference on Medical Imaging Physics and Engineering (ICMIPE). Shenzhen: IEEE, 2019. 1–6.
    [28] Hou L, Samaras D, Kurc TM, et al. Patch-based convolutional neural network for whole slide tissue image classification. Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016. 2424–2433.
    [29] Wang J, Xu Z, Pang ZF, et al. Tumor detection for whole slide image of liver based on patch-based convolutional neural network. Multimedia Tools and Applications, 2021, 80(11): 17429–17440.
    [30] Nguyen C, Asad Z, Deng R, et al. Evaluating transformer-based semantic segmentation networks for pathological image segmentation. Medical Imaging 2022: Image Processing. SPIE, 2022. 942–947.
    [31] Roy S, Das D, Lal S, et al. Novel edge detection method for nuclei segmentation of liver cancer histopathology images. Journal of Ambient Intelligence and Humanized Computing, 2023, 14(1): 479–496.
    [32] Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. Communications of the ACM, 2017, 60(6): 84–90.
    [33] Ronneberger O, Fischer P, Brox T. U-Net: Convolutional networks for biomedical image segmentation. Proceedings of the 18th International Conference on Medical Image Computing and Computer-assisted Intervention. Munich: Springer, 2015. 234–241.
    [34] Zhai ZR, Wang CL, Sun ZQ, et al. Deep neural network guided by attention mechanism for segmentation of liver pathology image. Proceedings of the 2021 Chinese Intelligent Systems Conference, Volume III. Singapore: Springer, 2022. 425–435.
    [35] Park HC, Ghimire R, Poudel S, et al. Deep learning for joint classification and segmentation of histopathology image. Journal of Internet Technology, 2022, 23(4): 903–910.
    [36] Tan MX, Le QV. EfficientNet: Rethinking model scaling for convolutional neural networks. Proceedings of the 36th International Conference on Machine Learning. Long Beach: ICML, 2019. 6105–6114.
    [37] Rong RC, Sheng HDY, Jin KW, et al. A deep learning approach for histology-based nucleus segmentation and tumor microenvironment characterization. Modern Pathology, 2023, 36(8): 100196.
    [38] 周志, 张孙杰, 张晓玥. 一种改进U型神经网络的医学细胞核图像分割方法. 小型微型计算机系统, 2023, 44(1): 110–116.
    [39] Lai S, Das D, Alabhya K, et al. NucleiSegNet: Robust deep learning architecture for the nuclei segmentation of liver cancer histopathology images. Computers in Biology and Medicine, 2021, 128: 104075.
    [40] Metaxas D, Qu H, Riedlinger G, et al. Deep learning-based nuclei segmentation and classification in histopathology images with application to imaging genomics. Computer Vision for Microscopy Image Analysis. Amsterdam: Elsevier, 2021. 185–201.
    [41] Zhu P, Wang CL, Sun ZQ, et al. Segmentation of liver cancer pathology images based on multi-scale feature fusion. Proceedings of the 2021 Chinese Intelligent Systems Conference: Volume III. Singapore: Springer, 2022. 596–605.
    [42] 林鹏, 蔡敏清, 房俊伟, 等. 肝癌术后复发的外科治疗研究现状及进展. 器官移植, 2022, 13(1): 111–119.
    [43] Qu WF, Tian MX, Qiu JT, et al. Exploring pathological signatures for predicting the recurrence of early-stage hepatocellular carcinoma based on deep learning. Frontiers in Oncology, 2022, 12: 968202.
    [44] Deuffic S, Poynard T, Buffat L, et al. Trends in primary liver cancer. The Lancet, 1998, 351(9097): 214–215.
    [45] Marrero JA, Kulik LM, Sirlin CB, et al. Diagnosis, staging, and management of hepatocellular carcinoma: 2018 practice guidance by the american association for the study of liver diseases. Hepatology, 2018, 68(2): 723–750.
    [46] 韩玉齐, 魏靖伟, 蒋涵羽, 等. 影像组学研究进展及其在肝癌中的临床应用. 中国科学: 生命科学, 2020, 50(11): 1309–1320.
    [47] Aatresh AA, Alabhya K, Lal S, et al. LiverNet: Efficient and robust deep learning model for automatic diagnosis of sub-types of liver hepatocellular carcinoma cancer from H&E stained liver histopathology images. International Journal of Computer Assisted Radiology and Surgery, 2021, 16(9): 1549–1563.
    [48] Chen MY, Zhang B, Topatana W, et al. Classification and mutation prediction based on histopathology H&E images in liver cancer using deep learning. NPJ Precision Oncology, 2020, 4(1): 14.
    [49] Edmondson HA, Steiner PE. Primary carcinoma of the liver. A study of 100 cases among 48900 necropsies. Cancer, 1954, 7(3): 462–503.
    [50] Atupelage C, Nagahashi H, Kimura F, et al. Computational hepatocellular carcinoma tumor grading based on cell nuclei classification. Journal of Medical Imaging, 2014, 1(3): 034501.
    [51] Li SQ, Jiang HY, Pang WB. Joint multiple fully connected convolutional neural network with extreme learning machine for hepatocellular carcinoma nuclei grading. Computers in Biology and Medicine, 2017, 84: 156–167.
    [52] Chen C, Chen C, Ma MR, et al. Classification of multi-differentiated liver cancer pathological images based on deep learning attention mechanism. BMC Medical Informatics and Decision Making, 2022, 22(1): 176.
    [53] Hu J, Shen L, Sun G. Squeeze-and-excitation networks. Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018. 7132–7141.
    [54] He KM, Zhang XY, Ren SQ, et al. Deep residual learning for image recognition. Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016. 770–778.
    [55] Woo S, Park J, Lee JY, et al. CBAM: Convolutional block attention module. Proceedings of the 15th European Conference on Computer Vision (ECCV). Munich: Springer, 2018. 3–19.
    [56] Li X, Wang WH, Hu XL, et al. Selective kernel networks. Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019. 510–519.
    [57] Li X, Shen X, Zhou YX, et al. Classification of breast cancer histopathological images using interleaved DenseNet with SENet (IDSNet). PLoS One, 2020, 15(5): e0232127.
    [58] Chanchal AK, Lal S, Barnwal D, et al. Evolution of livernet 2.x: Architectures for automated liver cancer grade classification from H&E stained liver histopathological images. Multimedia Tools and Applications, 2023: 1–31.
    [59] Dunn KW, Young PA. Principles of multiphoton microscopy. Nephron Experimental Nephrology, 2006, 103(2): e33–e40.
    [60] Lin HX, Wei C, Wang GX, et al. Automated classification of hepatocellular carcinoma differentiation using multiphoton microscopy and deep learning. Journal of Biophotonics, 2019, 12(7): e201800435.
    [61] Feng S, Yu XT, Liang WJ, et al. Development of a deep learning model to assist with diagnosis of hepatocellular carcinoma. Frontiers in Oncology, 2021, 11: 762733.
    [62] Chen QF, Xiao H, Gu YQ, et al. Deep learning for evaluation of microvascular invasion in hepatocellular carcinoma from tumor areas of histology images. Hepatology International, 2022, 16(3): 590–602.
    [63] Sun L, Sun ZQ, Wang CL, et al. PCformer: An MVI recognition method via classification of the MVI boundary according to histopathological images of liver cancer. Journal of the Optical Society of America A, 2022, 39(9): 1673–1681.
    [64] Chen HB, Wang K, Zhu YY, et al. From pixel to whole slide: Automatic detection of microvascular invasion in hepatocellular carcinoma on histopathological image via cascaded networks. Proceedings of the 24th International Conference on Medical Image Computing and Computer Assisted Intervention. Strasbourg: Springer, 2021. 196–205.
    [65] Wang K, Xiang YJ, Yan JP, et al. A deep learning model with incorporation of microvascular invasion area as a factor in predicting prognosis of hepatocellular carcinoma after R0 hepatectomy. Hepatology International, 2022, 16(5): 1188–1198.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

邵润华,刘静,马金刚,王一凡,陈天真,李明.卷积神经网络在肝癌病理图像诊断中的应用综述.计算机系统应用,2024,33(4):26-38

复制
分享
文章指标
  • 点击次数:685
  • 下载次数: 5364
  • HTML阅读次数: 2573
  • 引用次数: 0
历史
  • 收稿日期:2023-10-24
  • 最后修改日期:2023-11-27
  • 在线发布日期: 2024-01-30
文章二维码
您是第11482491位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号