基于多层次的海洋生物分类
作者:

Multi-hierarchical Classification for Marine Organisms
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [40]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    本文提出了一种多层次海洋生物分类方法. 海洋生物种类繁多, 且同门类生物具有较强的类间相似性, 而不同门类生物具有较大的差异. 我们利用物种间的相似性, 帮助网络学习生物先验知识, 设计出了一种多层次分类方法. 设计了C-MBConv模块, 并结合多层次分类方法改进了EfficientNetV2网络架构, 改进后的网络架构称为CM-EfficientNetV2. 我们的实验表明CM-EfficientNetV2比原网络EfficientNetV2有着更高的准确率, 在南麂列岛潮间带海洋生物数据集上准确率提高了1.5%, 在CIFAR-100上准确率提高了2%.

    Abstract:

    This study proposes a multi-hierarchical classification method for marine organisms. Marine organisms are diverse, and organisms of the same phylum have strong inter-class similarity, while organisms of various phyla have large differences. Meanwhile, a multi-hierarchical classification method is designed by utilizing the similarity among species to help the network learn biological prior knowledge. Additionally, this study designs a C-MBConv module and improves the EfficientNetV2 network architecture by combining the multi-hierarchical classification method, and the improved network architecture is called CM-EfficientNetV2. The experiments show that CM-EfficientNetV2 has higher accuracy than the original network EfficientNetV2, with an accuracy improvement of 1.5% on the inter-tidal marine biology dataset of the Nanji Islands and 2% on CIFAR-100.

    参考文献
    [1] Knausgård KM, Wiklund A, Sørdalen TK, et al. Temperate fish detection and classification: A deep learning based approach. Applied Intelligence, 2022, 52(6): 6988–7001.
    [2] Shafait F, Mian A, Shortis M, et al. Fish identification from videos captured in uncontrolled underwater environments. ICES Journal of Marine Science, 2016, 73(10): 2737–2746.
    [3] Villon S, Chaumont M, Subsol G, et al. Coral reef fish detection and recognition in underwater videos by supervised machine learning: Comparison between deep learning and HOG+SVM methods. Proceedings of the 17th International Conference on Advanced Concepts for Intelligent Vision Systems. Lecce: Springer, 2016. 160–171.
    [4] Siddiqui SA, Salman A, Malik MI, et al. Automatic fish species classification in underwater videos: Exploiting pre-trained deep neural network models to compensate for limited labelled data. ICES Journal of Marine Science, 2018, 75(1): 374–389.
    [5] Tan MX, Le QV. EfficientNetV2: Smaller models and faster training. Proceedings of the 38th International Conference on Machine Learning. ICML, 2021. 10096–10106.
    [6] Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. Proceedings of the 25th International Conference on Neural Information Processing Systems. Lake Tahoe: NIPS, 2012. 1106–1114.
    [7] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. Proceedings of the 3rd International Conference on Learning Representations. San Diego: ICLR, 2015.
    [8] Sfar AR, Boujemaa N, Geman D. Vantage feature frames for fine-grained categorization. Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition. Portland: IEEE, 2013. 835–842.
    [9] Deng J, Krause J, Fei-Fei L. Fine-grained crowdsourcing for fine-grained recognition. Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition. Portland: IEEE, 2013. 580–587.
    [10] Fan JP, Zhao TY, Kuang ZZ, et al. HD-MTL: Hierarchical deep multi-task learning for large-scale visual recognition. IEEE Transactions on Image Processing, 2017, 26(4): 1923–1938.
    [11] Kontschieder P, Fiterau M, Criminisi A, et al. Deep neural decision forests. Proceedings of the 2015 IEEE International Conference on Computer Vision. Santiago: IEEE, 2015. 1467–1475.
    [12] Fan JP, Zhou N, Peng JY, et al. Hierarchical learning of tree classifiers for large-scale plant species identification. IEEE Transactions on Image Processing, 2015, 24(11): 4172–4184.
    [13] Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston: IEEE, 2015. 3431–3440.
    [14] Silla CN, Freitas AA. A survey of hierarchical classification across different application domains. Data Mining and Knowledge Discovery, 2011, 22(1–2): 31–72.
    [15] Esuli A, Fagni T, Sebastiani F. Boosting multi-label hierarchical text categorization. Information Retrieval, 2008, 11(4): 287–313.
    [16] Griffin G, Perona P. Learning and using taxonomies for fast visual categorization. Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition. Anchorage: IEEE, 2008. 1–8.
    [17] Chang YJ, Kim N, Lee Y, et al. Fast and efficient lung disease classification using hierarchical one-against-all support vector machine and cost-sensitive feature selection. Computers in Biology and Medicine, 2012, 42(12): 1157–1164.
    [18] Wang HX, Shen XT, Pan W. Large margin hierarchical classification with mutually exclusive class membership. The Journal of Machine Learning Research, 2011, 12: 2721–2748.
    [19] Gopal S, Yang YM. Hierarchical Bayesian inference and recursive regularization for large-scale classification. ACM Transactions on Knowledge Discovery From Data, 2015, 9(3): 18.
    [20] Deng J, Satheesh S, Berg AC, et al. Fast and balanced: Efficient label tree learning for large scale object recognition. Proceedings of the 25th Annual Conference on Neural Information Processing Systems. Granada: NIPS, 2011. 567–575.
    [21] Howard AG, Zhu ML, Chen B, et al. MobileNets: Efficient convolutional neural networks for mobile vision applications. arXiv:1704.04861, 2017.
    [22] Sandler M, Howard AG, Zhu ML, et al. MobileNetV2: Inverted residuals and linear bottlenecks. Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018. 4510–4520.
    [23] Zhang XY, Zhou XY, Lin MX, et al. ShuffleNet: An extremely efficient convolutional neural network for mobile devices. Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018. 6848–6856.
    [24] Ma NN, Zhang XY, Zheng HT, et al. ShuffleNet V2: Practical guidelines for efficient CNN architecture design. Proceedings of the 15th European Conference on Computer Vision. Munich: Springer, 2018. 122–138.
    [25] Han K, Wang YH, Tian Q, et al. GhostNet: More features from cheap operations. Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle: IEEE, 2020. 1577–1586.
    [26] Tan MX, Le QV. EfficientNet: Rethinking model scaling for convolutional neural networks. Proceedings of the 36th International Conference on Machine Learning. Long Beach: ICML, 2019. 6105–6114.
    [27] Chollet F. Xception: Deep learning with Depthwise separable convolutions. Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu: IEEE, 2017. 1800–1807.
    [28] Wang WH, Xie EZ, Li X, et al. Pyramid vision transformer: A versatile backbone for dense prediction without convolutions. Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision (ICCV). Montreal: IEEE, 2021. 548–558.
    [29] Liu Z, Lin YT, Cao Y, et al. Swin transformer: Hierarchical vision transformer using shifted windows. Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision (ICCV). Montreal: IEEE, 2021. 9992–10002.
    [30] Dosovitskiy A, Beyer L, Kolesnikov A, et al. An image is worth 16x16 words: Transformers for image recognition at scale. Proceedings of the 9th International Conference on Learning Representations. ICLR, 2021.
    [31] Dai ZH, Liu HX, Le QV, et al. CoAtNet: Marrying convolution and attention for all data sizes. Proceedings of the 34th Advances in Neural Information Processing Systems. NeurIPS, 2021. 3965–3977.
    [32] Krizhevsky A, Hinton G. Learning multiple layers of features from tiny images. Technical Report, Toronto: University of Toronto, 2009.
    [33] Zhang HY, Cissé M, Dauphin YN, et al. Mixup: Beyond empirical risk minimization. Proceedings of the 6th International Conference on Learning Representations. Vancouver: ICLR, 2018.
    [34] Yun S, Han D, Chun S, et al. CutMix: Regularization strategy to train strong classifiers with localizable features. Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019. 6022–6031.
    [35] Szegedy C, Vanhoucke V, Ioffe S, et al. Rethinking the inception architecture for computer vision. Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016. 2818–2826.
    [36] Cubuk ED, Zoph B, Shlens J, et al. Randaugment: Practical automated data augmentation with a reduced search space. Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Seattle: IEEE, 2020. 3008–3017.
    [37] Loshchilov I, Hutter F. Decoupled weight decay regularization. Proceedings of the 7th International Conference on Learning Representations. New Orleans: ICLR, 2019.
    [38] Loshchilov I, Hutter F. SGDR: Stochastic gradient descent with warm restarts. Proceedings of the 5th International Conference on Learning Representations. Toulon: ICLR, 2017.
    [39] Chen J, Kao S, He H, et al. Run, don’t walk: Chasing higher FLOPS for faster neural networks. Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Vancouver: IEEE, 2023. 12021–12031.
    [40] Si CY, Yu WH, Zhou P, et al. Inception transformer. Proceedings of the 36th NeurIPS 2022. New Orleans: NeurIPS, 2022.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

赵东,程远志.基于多层次的海洋生物分类.计算机系统应用,2024,33(4):226-234

复制
分享
文章指标
  • 点击次数:391
  • 下载次数: 1494
  • HTML阅读次数: 832
  • 引用次数: 0
历史
  • 收稿日期:2023-10-08
  • 最后修改日期:2023-11-09
  • 在线发布日期: 2024-01-30
文章二维码
您是第11419087位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号