融合双分支动态偏好的会话推荐
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金面上项目(42271409)


Session Recommendation Incorporating Dual-branch Dynamic Preferences
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对基于会话的推荐算法仅对用户单一偏好进行静态建模而无法捕捉用户受环境影响偏好产生的波动, 从而降低推荐准确性的问题. 提出融合双分支动态偏好的会话推荐方法: 首先, 通过异构超图来建模不同类型信息, 设计双分支聚合机制获取以及整合异构超图中信息并且学习多类型节点之间的关系, 再用价格嵌入增强器来加强类别和价格之间关系; 其次, 设计双层偏好编码器, 其中采用多尺度时序Transformer提取用户动态价格偏好, 利用软注意机制和反向位置编码学习用户动态兴趣偏好; 最后, 用门控机制融合用户多类型动态偏好, 向用户进行推荐. 通过在Cosmetics和Diginetica-buy两个数据集上进行实验, 结果证明与其他对比算法相比在PrecisionMRR评价指标中有显著的提升.

    Abstract:

    Session-based recommendation algorithms only statically model a single preference of users and fail to capture the preference fluctuation of the users affected by the environment, thus reducing the recommendation accuracy. Therefore, this study proposes a session recommendation method that integrates dual-branch dynamic preferences. First, the heterogeneous hypergraph is used to model different types of information, and a dual-branch aggregation mechanism is designed to acquire and integrate the information in the heterogeneous hypergraph and learn the relationship between multiple types of nodes. Then, a price-embedded enhancer is used to strengthen the relationship between categories and prices. Second, a two-layer preference encoder is designed, which uses a multi-scale temporal Transformer to extract the user’s dynamic price preference, and a soft attention mechanism and reverse position encoding are used to learn the user’s dynamic interest preference. Finally, a gating mechanism is used to integrate the user’s multi-type dynamic preferences and make recommendations to users. By conducting experiments on two datasets, namely Cosmetics and Diginetica-buy, the results prove that there is a significant improvement in Precision and MRR evaluation metrics compared with other algorithms.

    参考文献
    相似文献
    引证文献
引用本文

沈学利,王乐,田学成.融合双分支动态偏好的会话推荐.计算机系统应用,2024,33(3):52-62

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-09-27
  • 最后修改日期:2023-10-25
  • 录用日期:
  • 在线发布日期: 2024-01-18
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号