摘要:各领域虚假新闻的传播对社会造成了严重的影响, 不同领域间新闻的领域偏移问题和跨域关联问题也对模型的预测能力造成了极大的挑战. 针对上述问题, 本文提出了一种基于交叉特征感知融合的多领域虚假新闻检测方法. 该方法可以捕捉不同领域间新闻的多种特征差异, 并挖掘新闻之间的关联关系, 从多个维度控制模型在不同领域的特征融合策略. 此外, 本文还提出了一种联合训练框架. 本方法的模型使用本框架进行训练, 在中英文数据集上的预测F1分数分别达到了92.84%和85.49%, 相较于最先进的模型, 预测效果分别提升了1.16%和1.07%.