摘要:复合片是PDC钻头的核心切削单元, 复合片自动检测技术是复合片自动修复技术的基础. 本文提出了一种基于改进YOLOv7的PDC钻头复合片检测方法, 在YOLOv7的基础上, 用深度可分离卷积替换了常规卷积, 减少了参数量和运算成本; 引入了SimAM注意力机制, 不需要额外的参数便可以从神经元中推导出3D注意力权重, 而且还能提高卷积神经网络的表达能力; 用SPPFCSPC替换了SPPCSPC, 在保证感受野不变的同时获得了速度的提升; 采用K-means++算法聚类先验框, 使用启发式算法定位出缺损的复合片. 实验结果表明, 本文算法较原YOLOv7模型mAP提高了2.75%, 参数量减少了约80%, 推理速度提高了9.12 f/s, 且较其他算法也有较大优势, 可实现复合片检测的工业应用.