摘要:多视图子空间聚类是一种从子空间中学习所有视图共享的统一表示, 挖掘数据潜在聚类结构的方法. 作为一种处理高维数据的聚类方法, 子空间聚类是多视图聚类领域的研究热点之一. 多视图低秩稀疏子空间聚类是一种结合了低秩表示和稀疏约束的子空间聚类方法. 该算法在构造亲和矩阵过程中, 利用低秩稀疏约束同时捕捉了数据的全局结构和局部结构, 优化了子空间聚类的性能. 三支决策是一种基于粗糙集模型的决策思想, 常被应用于聚类算法来反映聚类过程中对象与类簇之间的不确定性关系. 本文基于三支决策的思想, 设计了一种投票制度作为决策依据, 将其与多视图稀疏子空间聚类组成一个统一框架, 从而形成一种新的算法. 在多个人工数据集和真实数据集上的实验表明, 该算法可提高多视图聚类的准确性.