摘要:针对现有深度模型在工业轴承外观缺陷检测领域, 存在模型参数量大、特征融合不充分以及对小目标检测精度低等问题, 提出了一种轻量化自适应特征融合检测网络(Efficient-YOLO). 首先, 该网络采用嵌入CBAM注意力机制的EfficientNetV2结构进行基本特征提取, 便于确保模型精度同时显著优化模型参数量; 其次, 设计了一种自适应特征融合网络(CBAM-BiFPN), 用来增加网络对有效特征信息的提取; 接着, 在下游特征融合网络引入Swin?Transformer机制, 同时配合上游网络引入的Ghost卷积, 大幅度提高模型对轴承外观缺陷的全局感知能力; 最后, 在推理阶段运用改进的非极大值抑制方法(Soft-CIoU-NMS), 加入距离有关的权重评价因素, 减少了重叠框的漏检. 实验结果表明: 与现有主流检测模型相比, 此方法在轴承表面缺陷数据集上, mAP达到了90.1%, 参数量降低至1.99M, 计算量为7 GFLOPs, 对轴承缺陷小目标识别率显著提升, 满足工业现场轴承外观缺陷检测需求.