多策略融合改进的蜣螂优化算法
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(61972210)


Improved Dung Beetle Optimization Algorithm with Multi-strategy
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对标准蜣螂优化算法(DBO)存在的全局探索能力欠缺、收敛精度低及易陷入局部最优等不足, 提出了一种融合多策略的改进蜣螂优化算法(MSDBO). 首先, 引入社会学习策略引导推球蜣螂进行位置更新, 提高了算法全局探索能力, 避免算法陷入局部最优; 其次, 提出一种方向跟随策略, 建立起小偷蜣螂与推球蜣螂个体间的交互, 提高了寻优精度; 最后, 引入环境感知概率, 引导小偷蜣螂合理采用方向跟随策略, 兼顾了性能与时间消耗. 在12个基准测试函数上进行求解分析, 并与其他优化算法进行对比, 证明了MSDBO的寻优性能明显优于对比算法, 在压力容器设计优化问题上的结果验证了MSDBO求解实际工程约束优化问题的有效性.

    Abstract:

    An improved dung beetle optimization algorithm integrating multiple strategies (MSDBO) is proposed to solve the problems of weak global exploration ability, low convergence accuracy, and easy capture by local optimum solution. Firstly, this study introduces the social learning strategy to guide the dung beetle to update its position, which improves the global exploration ability of the algorithm and avoids the algorithm falling into local optimal. Secondly, the study proposes a direction-following strategy to establish the interaction between the thief and the ball-rolling dung beetle, which improves the accuracy of optimization. Finally, taking into account the performance and time consumption, it introduces environment-aware probability to guide the thief to adopt the direction-following strategy reasonably. Several optimization algorithms are selected and compared with MSDBO. By solving and analyzing 12 benchmark test functions, it is proved that the optimization performance of MSDBO is significantly better than that of the comparison algorithm. The results of pressure vessel design optimization verify the effectiveness of MSDBO in solving practical engineering constraint optimization problems.

    参考文献
    相似文献
    引证文献
引用本文

王乐遥,顾磊.多策略融合改进的蜣螂优化算法.计算机系统应用,2024,33(2):224-231

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-08-10
  • 最后修改日期:2023-09-09
  • 录用日期:
  • 在线发布日期: 2023-12-18
  • 出版日期: 2023-02-05
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号